7
Теорема косинусов для треугольника AМC
AC^2=AM^2+MC^2-2*AM*CM*cosAMC
Теорема косинусов для треугольника BМC
BC^2=BM^2+MC^2-2*BM*CM*cosBMC
AC=BC (треугольник равносторонний) Тогда AC^2=BC^2
AM^2+MC^2-2*AM*CM*cosAMC=BM^2+MC^2-2*BM*CM*cosBMC
AM^2-2*AM*CM*cosAMC=BM^2-2*BM*CM*cosBMC
АМ и ВM знаем
2^2-2*2*CM*cosAMC=10^2-2*10*CM*cosBMC
4-4*CM*cosAMC=100-20*CM*cosBMC
Углы ВМС и ВАС равны, опираются на одну дугу. ВАС=60 - равносторонний треугольник.
Угол АМС=АМВ+ВМС=АСВ+ВАС=60+60=120
4-4*CM*cos120=100-20*CM*cos60
4-4*CM*(-1/2)=100-20*CM*1/2
4+2*CM=100-10*CM
12*CM=96
СМ=8
Дано:
тр АВС - р/б (АС - основание)
АМ, СК - медианы
АМ ∩ СК = О
Доказать:
тр АОК = тр СОМ
Доказательство:
1) Т.к тр АВС - р/ б и АМ и СК медианы по условию, то
а) АК=КВ=ВМ=МС
б) уг ВАС = уг ВСА (по св-ву углов при основании р/б тр)
2) тр АКС = тр СМА по двум сторонам и углу между ними, так как в них:
АС - общая сторона
АК = СМ (по п.1а)
уг КАС = уг МСА (по п.1б)
Следовательно, уг АКС = уг СМА и уг АСК = уг САМ
3) уг МАК = уг КСМ, как разность равных углов за минусом равных углов, по аксиоме измерения углов,
а именно уг МАК = уг ВАС - уг САМ и
уг КСМ = уг ВСА - уг АСК
4) Получили:
АК = СМ (из п 1а)
уг МАК = уг КСМ (из п 3)
уг АКС = уг СМА ( из п 2)
следовательно, тр АОК = тр СОМ по стороне и двум прилежащим к ней углам
7
Теорема косинусов для треугольника AМC
AC^2=AM^2+MC^2-2*AM*CM*cosAMC
Теорема косинусов для треугольника BМC
BC^2=BM^2+MC^2-2*BM*CM*cosBMC
AC=BC (треугольник равносторонний) Тогда AC^2=BC^2
AM^2+MC^2-2*AM*CM*cosAMC=BM^2+MC^2-2*BM*CM*cosBMC
AM^2-2*AM*CM*cosAMC=BM^2-2*BM*CM*cosBMC
АМ и ВM знаем
2^2-2*2*CM*cosAMC=10^2-2*10*CM*cosBMC
4-4*CM*cosAMC=100-20*CM*cosBMC
Углы ВМС и ВАС равны, опираются на одну дугу. ВАС=60 - равносторонний треугольник.
Угол АМС=АМВ+ВМС=АСВ+ВАС=60+60=120
4-4*CM*cos120=100-20*CM*cos60
4-4*CM*(-1/2)=100-20*CM*1/2
4+2*CM=100-10*CM
12*CM=96
СМ=8
Дано:
тр АВС - р/б (АС - основание)
АМ, СК - медианы
АМ ∩ СК = О
Доказать:
тр АОК = тр СОМ
Доказательство:
1) Т.к тр АВС - р/ б и АМ и СК медианы по условию, то
а) АК=КВ=ВМ=МС
б) уг ВАС = уг ВСА (по св-ву углов при основании р/б тр)
2) тр АКС = тр СМА по двум сторонам и углу между ними, так как в них:
АС - общая сторона
АК = СМ (по п.1а)
уг КАС = уг МСА (по п.1б)
Следовательно, уг АКС = уг СМА и уг АСК = уг САМ
3) уг МАК = уг КСМ, как разность равных углов за минусом равных углов, по аксиоме измерения углов,
а именно уг МАК = уг ВАС - уг САМ и
уг КСМ = уг ВСА - уг АСК
4) Получили:
АК = СМ (из п 1а)
уг МАК = уг КСМ (из п 3)
уг АКС = уг СМА ( из п 2)
следовательно, тр АОК = тр СОМ по стороне и двум прилежащим к ней углам