Второй угол, который получается при пересечении диагоналей, равен 30°, т.к. углы смежные.
Проведя высоту из вершины тупого угла на длинную диагональ, получим прямоугольный треугольник, высота параллелограмма в котором является катетом, противолежащим углу 30°. Потому она равна 1/2 от половины меньшей диагонали и равна 2 см.
Диагональ 10 см - основание 2-х равных треугольников, на который она поделила параллелограмм.
Имеем основание треугольника и его высоту.
Найдем его площадь, которая равна половине произведения основания на высоту.
SΔ =2·10:2=10 см²
Площадь параллелограмма вдвое больше площади этого треугольника и равна
Двугранный угол при ребре основания равен плоскому углу между высотами h, проведенными к боковому ребру из точек А и Д в точку М.
По свойству площади треугольника определяем:
А*а = L*h. Отсюда h = А*а/ L = 4√2*4/6 = 8√2/3.
Получаем равнобедренный треугольник с боковыми сторонами АМ и ДМ по 8√2/3 и с основанием АД, равным диагонали квадрата основания 4√2.
Косинус искомого угла М равен:
cos М = ((8√2/3)² + (8√2/3)² - (4√2)²)/(2*(8√2/3)*(8√2/3)) = -1/8.
Угол равен arccos(-1/8) = 1,696 радиан или 97,18 градуса.
2) Угол между плоскостями АВС и BDC1 равен плоскому углу между отрезками, проведенными из точек С и С1 в точку О пересечения диагоналей нижнего основания .
Второй угол, который получается при пересечении диагоналей, равен 30°, т.к. углы смежные.
Проведя высоту из вершины тупого угла на длинную диагональ, получим прямоугольный треугольник, высота параллелограмма в котором является катетом, противолежащим углу 30°. Потому она равна 1/2 от половины меньшей диагонали и равна 2 см.
Диагональ 10 см - основание 2-х равных треугольников, на который она поделила параллелограмм.
Имеем основание треугольника и его высоту.
Найдем его площадь, которая равна половине произведения основания на высоту.
SΔ =2·10:2=10 см²
Площадь параллелограмма вдвое больше площади этого треугольника и равна
10·2=20 см²
1) Находим апофему А как высоту боковой грани.
А = √(6² - (4/2)²) = √(36 - 4) = √32 = 4√2.
Двугранный угол при ребре основания равен плоскому углу между высотами h, проведенными к боковому ребру из точек А и Д в точку М.
По свойству площади треугольника определяем:
А*а = L*h. Отсюда h = А*а/ L = 4√2*4/6 = 8√2/3.
Получаем равнобедренный треугольник с боковыми сторонами АМ и ДМ по 8√2/3 и с основанием АД, равным диагонали квадрата основания 4√2.
Косинус искомого угла М равен:
cos М = ((8√2/3)² + (8√2/3)² - (4√2)²)/(2*(8√2/3)*(8√2/3)) = -1/8.
Угол равен arccos(-1/8) = 1,696 радиан или 97,18 градуса.
2) Угол между плоскостями АВС и BDC1 равен плоскому углу между отрезками, проведенными из точек С и С1 в точку О пересечения диагоналей нижнего основания .
СО = √((2/2)² + (3/2)²) = √(1 + (9/4)) = √13/2.
ответ: tg(COC1) = CC1/CO = 4/(√13/2) = 8/√13 = 8√13/13.