1) размеры коробочки должны быть 12 см х 12 см х 3 см; 2) наибольший объём коробочки 432 см³.
Объяснение:
Очевидно, что при одном и том же периметре основания 48 см максимальная площадь будет у квадрата со стороной 48 : 4 = 12 см, т.к., уменьшая одну из сторон квадрата на величину х и добавляя эту же величину х к другой стороне, мы будем получать меньшую площадь:
(12 - х ) (12 + х) = 12² - х² (разность квадратов двух чисел), то есть от площади 144 см² будем отнимать х². Например, при х = 2 см, стороны соответственно будут равны 10 см и 14 см, а площадь 140 см², что 2² меньше площади квадрата.
Таким образом, чтобы команда победила, размеры коробочки должны быть: 12 см х 12 см х 3 см.
Из этого следует, что наибольший объём коробочки равен:
12 · 12 · 3 = 432 см³
ответ: 1) размеры коробочки должны быть 12 см х 12 см х 3 см; 2) наибольший объём коробочки 432 см³.
1) размеры коробочки должны быть 12 см х 12 см х 3 см; 2) наибольший объём коробочки 432 см³.
Объяснение:
Очевидно, что при одном и том же периметре основания 48 см максимальная площадь будет у квадрата со стороной 48 : 4 = 12 см, т.к., уменьшая одну из сторон квадрата на величину х и добавляя эту же величину х к другой стороне, мы будем получать меньшую площадь:
(12 - х ) (12 + х) = 12² - х² (разность квадратов двух чисел), то есть от площади 144 см² будем отнимать х². Например, при х = 2 см, стороны соответственно будут равны 10 см и 14 см, а площадь 140 см², что 2² меньше площади квадрата.
Таким образом, чтобы команда победила, размеры коробочки должны быть: 12 см х 12 см х 3 см.
Из этого следует, что наибольший объём коробочки равен:
12 · 12 · 3 = 432 см³
ответ: 1) размеры коробочки должны быть 12 см х 12 см х 3 см; 2) наибольший объём коробочки 432 см³.
Периметр ромба равен 8 м.
Объяснение:
В ромбе диагонали взаимно перпендикулярны и являются биссектрисами углов. Следовательно ∠KEL = ∠EKL.
∠EOA = ∠EKL (дано). =>
∠KEL = ∠EAO => треугольник EOA равнобедренный.
Кроме того, АВ║LK║EF (так ∠EOA = ∠EKL соответствкнные углы при АВ и LK и секущей ЕК).
Значит ЕА = АО =1м.
АО = ОВ (так как точка О - точка пересечения диагоналей ромба).
AEFB - параллелограмм (так как АВ║EF и EA║FB). =>
EF =AB = 2·AO = 2 м.
Итак, сторона ромба равна 2м, тогда его периметр равен 8м (стороны ромба равны).