Задача решается через подобие треугольников В подобных треугольниках соответствующие стороны пропорциональны. Первый треугольник АВС, где: АВ - это высота столба, АВ=5,4 (м); АС - длина тени столба, ее нужно найти, АС=х (м); угол А=90°, угол В - это угол, под которым падает луч солнца. Второй треугольник КНР, где: КН - это рост человека, КН=170 (см)=1,7 (м); КР - это длина тени человека, КР=1 (м); угол К=90°; угол Н - это угол, под которым падает луч солнца. Прямоугольные треугольники АВС и КНР подобны по острому углу: уг.В=уг.Н; Из подобия треугольников следует соотношение: АВ/КН=АС/КР; 5,4/1,7=х/1; х=3 3/17 (м); ответ: 3 3/17
ответ: Из точки К на основания двух противоположных боковых граней опустим апофемы КН и КН1. Угол НКН1 = 90 градусов (так как грани перпендикулярны и КН ⊥ AD, КН1 ⊥ BC). Из условия задачи следует, что НН1 = 6√2. Рассмотрим ΔНКН1 - прямоугольный. В нем КН=КН1=НН1/√2=6√2/√2=6. Теперь рассмотрим ΔОКН - тоже прямоугольный, тк КО - высота пирамиды. ОН=1/2 * НН1= 6√2/2=3√2.
По теореме Пифагора: КО² = КН² - ОН² = 6²-18 = 18 ⇒ КО = 3√2.
АС - диагональ квадрата ABCD, она равна DC*√2 = 6√2*√2 = 12.
Площадь ΔКАС(площадь диагонального сечения) = 1/2 * КО * АС =
ответ: Из точки К на основания двух противоположных боковых граней опустим апофемы КН и КН1. Угол НКН1 = 90 градусов (так как грани перпендикулярны и КН ⊥ AD, КН1 ⊥ BC). Из условия задачи следует, что НН1 = 6√2. Рассмотрим ΔНКН1 - прямоугольный. В нем КН=КН1=НН1/√2=6√2/√2=6. Теперь рассмотрим ΔОКН - тоже прямоугольный, тк КО - высота пирамиды. ОН=1/2 * НН1= 6√2/2=3√2.
По теореме Пифагора: КО² = КН² - ОН² = 6²-18 = 18 ⇒ КО = 3√2.
АС - диагональ квадрата ABCD, она равна DC*√2 = 6√2*√2 = 12.
Площадь ΔКАС(площадь диагонального сечения) = 1/2 * КО * АС =
= 1/2 * 3√2 * 12 = 18√2