С1. які координати має проекція точки m (-3; 2; 4) на координатну площину: 1) xz 2)yz3)xy2. знайдіть координати середини відрізка ef, якщо e (3; -3; 10), f (1; -4; -8)
Только половина : в равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой. доказательство пусть δ abc – равнобедренный с основанием ab, и cd – медиана, проведенная к основанию. в треугольниках cad и cbd углы cad и cbd равны, как углы при основании равнобедренного треугольника , стороны ac и bc равны по определению равнобедренного треугольника, стороны ad и bd равны, потому что d – середина отрезка ab . отсюда получаем, что δ acd = δ bcd . из равенства треугольников следует равенство соответствующих углов: acd = bcd, adc = bdc . из первого равенства следует, что cd – биссектриса. углы adc и bdc смежные, и в силу второго равенства они прямые, поэтому cd – высота треугольника. теорема доказана.
Диагонали ромба точкой пересечения делятся пополам (как и у параллелограмма)
Диагонали ромба взаимно перпендикулярны
Диагонали ромба являются биссектрисами его углов
из треуг.BOA: угол BAO=30, катет BO = 4/2 = 2 (катет против угла в 30 град.=половине гипотенузы) и по т.Пифагора второй катет = корень(4^2-2^2) = 2корень(3)
Диагонали ромба точкой пересечения делятся пополам (как и у параллелограмма)
Диагонали ромба взаимно перпендикулярны
Диагонали ромба являются биссектрисами его углов
из треуг.BOA: угол BAO=30, катет BO = 4/2 = 2 (катет против угла в 30 град.=половине гипотенузы) и по т.Пифагора второй катет = корень(4^2-2^2) = 2корень(3)
следовательно, диагонали ромба равны
BD = 2BO = 4
AC = 2AO = 4корень(3)
AC1^2 = AC^2 + CC1^2 = 4*4*3 + 6*6 = 4*(12+9) = 4*21
AC1 = 2корень(21)
B1D^2 = BD^2 + CC1^2 = 4+36 = 40
B1D = 2корень(10)