В любом треугольнике — сумма двух сторон должна быть больше оставшийся стороны, тоесть предположми, что боковые друг другу равны стороны — 7.49; 7.49, а основание — 3.74.
7.49+7.49 = 14.98 > 3.74 (сумма двух сторон больше)
3.74+7.49 = 11.23 > 7.49 (сумма двух сторон больше)
7.49+3.74 = 11.23 > 7.49.
Как мы видим, сумма каждых двух сторон больше каждой оставшийся стороны, тоесть — такой треугольник существует.
Вариант 2: боковые стороны — 3.74, основание — 7.49.
3.74+3.74 = 7.48 < 7.49.
Как мы видим сумма двух боковых сторон меньше основания, что и означает, что треугольник с боковыми сторонами 3.74; 3.74, и основанием — 7.49 — существовать не может.
2.
Треугольник MBC — прямоугольный треугольник, так как высота(или катет) обрзует прямой угол <BMC.
BC = 8.6; <C = 90-60 = 30° ⇒ MB = BC/2 (теорема о 30-градусном угле прямоугольного треугольника).
1)проведем радиус=оа,ов,ос 2)рассмотрим треуг. АОД,и треуг. ВОС. треуг.АОД т.к. ОА=ОД=радиусу,треуг. ВОС т.к. ОВ=ОС=радиусу 3)треуг. АОД=треуг. ВОС(по 1 признаку равенства треуг.) т.к. ОА=ОС,ОВ=ОД угол АОД=углу ВОС(вертек.) 4)из равенства треуг. следует что АД=ВС, ОК и ОЛ-высота проведенная к сторонам следовательно ОК=ОЛ
1.
В любом треугольнике — сумма двух сторон должна быть больше оставшийся стороны, тоесть предположми, что боковые друг другу равны стороны — 7.49; 7.49, а основание — 3.74.
7.49+7.49 = 14.98 > 3.74 (сумма двух сторон больше)
3.74+7.49 = 11.23 > 7.49 (сумма двух сторон больше)
7.49+3.74 = 11.23 > 7.49.
Как мы видим, сумма каждых двух сторон больше каждой оставшийся стороны, тоесть — такой треугольник существует.
Вариант 2: боковые стороны — 3.74, основание — 7.49.
3.74+3.74 = 7.48 < 7.49.
Как мы видим сумма двух боковых сторон меньше основания, что и означает, что треугольник с боковыми сторонами 3.74; 3.74, и основанием — 7.49 — существовать не может.
2.
Треугольник MBC — прямоугольный треугольник, так как высота(или катет) обрзует прямой угол <BMC.
BC = 8.6; <C = 90-60 = 30° ⇒ MB = BC/2 (теорема о 30-градусном угле прямоугольного треугольника).
MB = BC/2 ⇒ MB = 8.6/2 = 4.3.
Вывод: Высота MB равна 4.3.