Ага Итак, NK=BK=. Значит, DK=2NK=2. Считаем площадь равнобедренного ADC==6. Получаем, наконец, площадь полной поверхности: 3+3*6=21 (площадь основания плюс площади трех боковых граней). Переходим к объему. Объем пирамиды равен одной трети произведения площади основания на высоту. В нашем случае это площадь ABC, а высота - DN. Найдем DN по теореме Пифагора из знакомого нам DNK. DN=. И наконец, V=9 Уффф. Извини, что так долго ждать заставил - замучился формулы писать. Перепроверь подсчеты, а в остальном - как-то так.
2). Рассмотрим треугольники ABD и CBE. Они равны по первому признаку: две стороны и угол между ними одного треуг-ка соответственно равны двум сторонам и углу между ними другого: - АВ=СВ, т.к. АВС равнобедренный; - AD=CE по условию; - углы А и С треуг-ка АВС равны как углы при основании равнобедренного треугольника (по свойству равнобедренного треуг-ка). У равных треугольников ABD и CBE равны соответственные стороны BD и ВЕ. Значит, DBE равнобедренный.
3). Рассмотрим треуг-ки АСВ и ADB. Они равны по второму признаку: сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треуг-ка: - АВ - общая сторона; - <CAB=<DAB, т.к. АВ - биссектриса; - <ABC=<ABD по условию. У равных треугольников равны соответственные стороны АС и AD.
Итак, NK=BK=. Значит, DK=2NK=2. Считаем площадь равнобедренного ADC==6. Получаем, наконец, площадь полной поверхности: 3+3*6=21 (площадь основания плюс площади трех боковых граней).
Переходим к объему. Объем пирамиды равен одной трети произведения площади основания на высоту. В нашем случае это площадь ABC, а высота - DN. Найдем DN по теореме Пифагора из знакомого нам DNK. DN=. И наконец, V=9
Уффф. Извини, что так долго ждать заставил - замучился формулы писать. Перепроверь подсчеты, а в остальном - как-то так.
- АВ=СВ, т.к. АВС равнобедренный;
- AD=CE по условию;
- углы А и С треуг-ка АВС равны как углы при основании равнобедренного треугольника (по свойству равнобедренного треуг-ка).
У равных треугольников ABD и CBE равны соответственные стороны BD и ВЕ. Значит, DBE равнобедренный.
3). Рассмотрим треуг-ки АСВ и ADB. Они равны по второму признаку: сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треуг-ка:
- АВ - общая сторона;
- <CAB=<DAB, т.к. АВ - биссектриса;
- <ABC=<ABD по условию.
У равных треугольников равны соответственные стороны АС и AD.