. СА – касательная к окружности. Вычислите градусную меру угла АВО, если ∠ВАС=58°.
[3]
2. Равнобедренный треугольник АВС (АВ=ВС) вписан в окружность с центром в точке О. Найдите величины дуг АС, АВ и ВС, если ∠АОС=70°. [4]
3. В окружности с центром в точке О проведен диаметр РМ=16,8 см и хорда АК, перпендикулярная РМ и равная радиусу данной окружности. Диаметр РМ и хорда АК пересекаются в точке Е.
a) выполните чертеж по условию задачи;
b) найдите радиус окружности; [4]
c) найдите длину отрезка АЕ;
d) вычислите периметр треугольника АОК.
4. В прямоугольном треугольнике СОК ( О = 90°) , СК= 18, СКО = 30° с центром в точке С проведена окружность. Каким должен быть ее радиус, чтобы:
а) окружность касалась прямой КО; [4]
b) окружность не имела общих точек с прямой КО;
c) окружность имела две общие точки с прямой КО?
5. Постройте треугольник АМР по сторонам АM=7 см, МK=6 см и углу ∠АМР = 45о. В полученном треугольнике постройте серединный перпендикуляр к стороне АР
Решите сегодня
ABCD- параллелограмм, где АВ=CD=3 cм, АD=BC=7см., АС и BD- диагонали параллелограмма пересекающиеся в точке К, BD=6 см. МК - высота пирамиды, МК=4см. Найти:АM, DM, CM, BM. Решение: 1)Рассм АВСD, по свойствам параллелограмма АС^2+BD^2=2*(AB^2+AD^2); AC^2=2*(AB^2+AD^2)-BD^2; AC^2= 2(9+49)-36=80 cм^2. AC=4корень из 5 см; 2)рассм. треугольники АКМ и CKM - они равны по 1 признаку равенства треугольников, МК - общая сторона, АК=КС, т.к. диагонали параллелограмма делятся в точке их пересечения пополам. Угол МКА = углу МКС = 90 градусов, т.к. МК перпендикулярно АС. Следовательно АМ=СМ. 3)По аналогичным признакам равны треугольники DRM и DKM. Следовательно ВМ=DM. 4)Рассм треугольник АКМ - прямоугольный, по т. Пифагора АМ^2=AK^2+MK^2; AM^2=(1/2AC)^2+MK^2=(2 корень из 5)^2 +16=20+16=36. AM==СМ=6 cм. 5) Рассм треугольник ВКМ-прямоугольный, по т. Пифагора BM^2=BK^2+MK^2; BM^2= (1/2BD)^2+MK^2; BM^2=9+16=25. BM=DM=5 см. ответ: BM=DM=5 см, AM=СМ=6 cм
Если один из углов при боковой стороне трапеции прямой, то второй при той же стороне тоже прямой. Здесь угол В=А = 90°
Поскольку от угла С отнимается диагональю прямой угол, остается угол 45°, угол САD тоже 45°, как накрестлежащий, и Δ АВС - равнобедренный прямоугольный. Отсюда сторона ВС=АВ=5 см.
Опустим из угла С перпендикуляр СМ на АD. Получим АМ=ВС=5см, а треугольник СМD равнобедренный, т.к. в нем угол при С прямой, угол D=45°(180°-135°) и потому
МD=ВМ=5 см
АD=АМ+МD=10 см
Средняя линия трапеции
½(АD+ВС)=(10+5):2=7,5 см