. СА – касательная к окружности. Вычислите градусную меру угла ВАС.
[3]
2. Равнобедренный треугольник АВС вписан в окружность. Основание треугольника АС равно радиусу окружности. Найдите величины дуг АС, АВ и ВС.
[4]
3. В окружности с центром в точке О к хорде LM, равной радиусу окружности, перпендикулярно проведен диаметр EK. Диаметр EK и хорда LM пересекаются в точке А. Длина отрезка LА равна 11,4 см.
a) постройте рисунок по условию задачи;
b) определите длину хорды LM;
c) определите длину диаметра EK;
d) найдите периметр треугольника ОLM.
[4]
4. В прямоугольном треугольнике АСВ ( C = 90°) , АВ = 12, ABC = 30°. С центром в точке А проведена окружность. Каким должен быть ее радиус, чтобы:
а) окружность касалась прямой ВС;
b) окружность не имела общих точек с прямой ВС;
c) окружность имела две общие точки с прямой ВС?
[4]
5. Задача на построение
a) постройте треугольник по двум сторонам и углу между ними;
b) в полученном треугольнике постройте биссектрису одного из углов
[5]
Задает данные задачи
Построены отрезки, равные заданным
Построен угол, равный заданному
Построен треугольник и записано построение
Построена биссектриса угла
1) Сумма углов треугольника 180°. В ∆ АВС угол В=180°-50°-60°=70°. В ∆ А1В1С1 угол А1=180°-708-608=50°. Треугольники АВС и А1В1С1 подобны по равенству всех углов.
2) По условию АС║BD, АВ и СD - секущие. Образовавшиеся при пересечении секущими параллельных прямых накрестлежащие углы равны. ⇒ ∠СAО=∠DBO=61°. Треугольники АОС и BOD подобны по равенству накрестлежащих углов, а стороны, содержащие вертикальные углы при О - пропорциональны. k=АО:ВО=12:4=3, k=СО:DO=30:10=3. Отношение площадей подобных фигур равно квадрату коэффициента их подобия. S(AOC):S(BOD)=k²=3²=9