В четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противолежащих сторон равны.
Для трапеции АВСD, в которую вписана окружность, BC+AD=AB+CD=60+16+36=112 см.
Стороны трапеции - касательные к вписанной окружности. Обозначим точки касания на ВС– Е, на СD - К, на AD-М. По свойству равенства отрезков касательных, проведенных из одной точки, СЕ=СК=16, DK=DM=36.
Соединим точки касания на основаниях отрезком ЕМ. Опустим высоту СН. МН=ЕС=16
DH=DM-CE=36-16=20.
По т.Пифагора СН=√(CD²-DH²)=√(52²-20²)=48 (см)
Площадь трапеции равна произведению полусуммы оснований на высоту.
Сторона FE меньше за сторону EP в два раза. Проверим, не является ли этот треугольник прямоугольным с углом в 30°, учитывая, что FP<EP.
Квадрат наибольшей стороны равен сумме квадратов остальных сторон ⇒ ΔFEP — прямоугольный, ∠EFP = 90°, т.к. лежит напротив гипотенузы.
Если катет треугольника лежит напротив угла в 30°, то он равен половине гипотенузы. Используем это свойство в обратную сторону:
Если катет меньше гипотенузы в два раза, тогда он лежит против угла в 30°. Катет FE = 1/2 гипотенузы EP ⇒ ∠EPF = 30°. Тогда по теореме о сумме углов треугольника ∠FEP (∠E) = 180−(90+30) = 60°.
Р-м ΔKFP:
∠KFP = 90°, т.к. смежный с прямым углом ∠EFP. KF = PF — по условию ⇒ равнобедренный, следовательно ∠FKP (∠K) = FPK = (180−90)/2 = 45°.
ответ: 2688 см²
Объяснение:
В четырехугольник можно вписать окружность тогда и только тогда, когда суммы длин его противолежащих сторон равны.
Для трапеции АВСD, в которую вписана окружность, BC+AD=AB+CD=60+16+36=112 см.
Стороны трапеции - касательные к вписанной окружности. Обозначим точки касания на ВС– Е, на СD - К, на AD-М. По свойству равенства отрезков касательных, проведенных из одной точки, СЕ=СК=16, DK=DM=36.
Соединим точки касания на основаниях отрезком ЕМ. Опустим высоту СН. МН=ЕС=16
DH=DM-CE=36-16=20.
По т.Пифагора СН=√(CD²-DH²)=√(52²-20²)=48 (см)
Площадь трапеции равна произведению полусуммы оснований на высоту.
S(ABCD)=0,5(BC+AD)•CH=0,5•112•48=2688 см².
∠ Р-м ΔFEP:
Сторона FE меньше за сторону EP в два раза. Проверим, не является ли этот треугольник прямоугольным с углом в 30°, учитывая, что FP<EP.
Квадрат наибольшей стороны равен сумме квадратов остальных сторон ⇒ ΔFEP — прямоугольный, ∠EFP = 90°, т.к. лежит напротив гипотенузы.
Если катет треугольника лежит напротив угла в 30°, то он равен половине гипотенузы. Используем это свойство в обратную сторону:
Если катет меньше гипотенузы в два раза, тогда он лежит против угла в 30°. Катет FE = 1/2 гипотенузы EP ⇒ ∠EPF = 30°. Тогда по теореме о сумме углов треугольника ∠FEP (∠E) = 180−(90+30) = 60°.
Р-м ΔKFP:
∠KFP = 90°, т.к. смежный с прямым углом ∠EFP. KF = PF — по условию ⇒ равнобедренный, следовательно ∠FKP (∠K) = FPK = (180−90)/2 = 45°.
Р-м ΔKEP:
∠E = 60°, ∠K = 45° ⇒ ∠P = 180−(60+45) =75°
ответ: Углы треугольника равны 60°, 45° и 75°.