0 Свойство катета прямоугольного треугольника - Геометрия 7 класс
Открыт 1 ответов 1152 Просмотров Геометрия
Оказалось, что простатит боится, как огня именно это ... Вы больше никогда не вспомните о простатите ПОДРОБНЕЕ
Система заработка, которая стреляет без промаха! От $1000 в ... От вас только требуется запустить это видео! Я разбогатела ... ПОДРОБНЕЕ Один из острых углов прямоугольного треугольника равен 60°, а сумма короткого катета и гипотенузы равна 33 см. Определи длину короткого катета.
1. Величина второго острого угла равна ° 2. Длина короткого катета равна см. спросил 16 фев, 15 от it всезнающее око (72, ) в категории геометрия Пометитьответить 1 ответ kola99 132, Зарегистрированный пользователь 0
1. Если один из острых углов прямоугольного треугольника равен 60°, то другой острый угол равен 30°.
2. Значит острый угол, который равен 30°, является меньшим углом прямоугольного треугольника, а напротив меньшего угла расположена меньшая сторона. Катет напротив угла равного 30° равен половине гипотенузы. Если обозначить короткий катет через x, то
Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.
Объяснение:
Рисунок прилагается.
Дано: ABC прямоугольный треугольник, ∠ С = 90°, CH- высота, AH = 2 см - проекция катета AC на гипотенузу, BH = 18 см - проекция катета BC на гипотенузу.
Найти катеты AC и BC.
Обозначим для удобства катеты AC = a, BC = b, проекции катетов AH = a₁, BH = b₁, высоту CH = h.
Высота в прямоугольном треугольнике, опущенная на гипотенузу, равна среднему пропорциональному проекций катетов на гипотенузу.
h² = a₁*b₁ = 2 * 18 = 36; h = 6
⇒ Высота треугольника, опущенная на гипотенузу CH = h = 6 см.
Без ответов
Теги
Пользователи
0 Свойство катета прямоугольного треугольника - Геометрия 7 класс
Открыт 1 ответов 1152 Просмотров Геометрия
Оказалось, что простатит боится, как огня именно это ...
Вы больше никогда не вспомните о простатите
ПОДРОБНЕЕ
Система заработка, которая стреляет без промаха! От $1000 в ...
От вас только требуется запустить это видео! Я разбогатела ...
ПОДРОБНЕЕ
Один из острых углов прямоугольного треугольника равен 60°, а сумма короткого катета и гипотенузы равна 33 см.
Определи длину короткого катета.
1. Величина второго острого угла равна °
2. Длина короткого катета равна
см.
спросил 16 фев, 15 от it всезнающее око (72, ) в категории геометрия
Пометитьответить
1 ответ
kola99
132, Зарегистрированный пользователь
0
1. Если один из острых углов прямоугольного треугольника равен 60°, то другой острый угол равен 30°.
2. Значит острый угол, который равен 30°, является меньшим углом прямоугольного треугольника, а напротив меньшего угла расположена меньшая сторона.
Катет напротив угла равного 30° равен половине гипотенузы.
Если обозначить короткий катет через x, то
x+2x=333x=33x=33:3x=11
Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.
Объяснение:
Рисунок прилагается.
Дано: ABC прямоугольный треугольник, ∠ С = 90°, CH- высота, AH = 2 см - проекция катета AC на гипотенузу, BH = 18 см - проекция катета BC на гипотенузу.
Найти катеты AC и BC.
Обозначим для удобства катеты AC = a, BC = b, проекции катетов AH = a₁, BH = b₁, высоту CH = h.
Высота в прямоугольном треугольнике, опущенная на гипотенузу, равна среднему пропорциональному проекций катетов на гипотенузу.
h² = a₁*b₁ = 2 * 18 = 36; h = 6
⇒ Высота треугольника, опущенная на гипотенузу CH = h = 6 см.
Из прямоугольного ΔACH по теореме Пифагора:
a² = h² + a₁² = 6² + 2² = 36 + 4 = 40; a = √40 = 2√10
Катет AC = 2√10 см/
Из прямоугольного ΔBCH по теореме Пифагора:
b² = h² + b₁² = 6² + 18² = 36 + 324 = 360; b = √360 = 6√10
Катет BC = 6√10 см.
Катеты данного прямоугольного треугольника равны 2√10 см и 6√10 см.