Обозначил меньшее основание - а, большее основание - b. Тогда периметр трапеции, с учётом условия равенства меньшего основания и боковых сторон, можно записать так Р=3*а+b. Площадь трапеции выглядит так: S=1/2*(a+b)*h, подставим известные нам значения 128=1/2*(a+b)*8 или a+b=(128*2)/8; a+b=32. Выразим из последнего уравнения b и подставим его в уравнение периметра: b=32-a; P=3*a+32-a; получим 52=2*а+32; 2а=52-32; 2а=20; а=10 см. b=32-10=22 см. Получили, что боковые стороны и меньшее основание равны 10 см, а большее основание равно 22 см.
Угол равен 45 градусов, а высота проведена из вершины тупого угла на сторону параллелограмма. Получается треугольник, содержащий эту высоту и угол в 45 градусов. В треугольнике, как известно, 3 угла. Т.к. высота опускается (проводится) под прямым углом, то он равен 90 градусов. Имеем 2 угла: 45 градусов и 90 градусов. Найдем третий угол: 180-45-90=45 градусов. Получается, что у нас есть 2 одинаковых угла, значит, треугольник (в котором лежат эти углы и принадлежит высота) равнобедренный. Значит, высота равна половина стороны параллелограмма, на которую она опущена. Т.к. высота равна 3, то и половина стороны равна 3. Вся сторона параллелограмма состоит из двух таких равных частей, поэтому: 3+3=6 ответ: 6. Поставь как лучший, если не сложно)
ответ: 6.
Поставь как лучший, если не сложно)