Самостоятельная работа «Многоугольники» 1 вариант 1). На рисунках са-ж изображены фигуры. Укажите, какие из них являются: с; могоугольниками; б) выпуклыми многоугольниками; в) невыпуклыми многоугольниками.
3) к этому заданию рисунок не нужен решение: раз трапеция описана вокруг круга, то сумма противоположных сторона равна, значит сумма боковых сторон равна сумме оснований = 6 + 8 = 14 см средняя линия равна полусумме оснований = 14/2 = 7 см
2) <BOC = <AOD (вертикальные) BC ll AD (основания трапеции) <BCA = <CAD (накрест лежащие) <CBO = <ODA (накрест лежащие)==> ==> тр.ВОС подобен тр.AOD (по трем углам) (рис.1)
5) <KAD = <DAK (накрест лежащие) <DAK = <BAK (АК - биссектриса) ==> <BAK = <BKA==> ==> тр. АВК - равнобедреный и тогда АВ = ВК = 4 см ВС = ВК + КС = 4 + 6 = 10 см S abcd = AB * BC = 4 * 10 = 40 см^2(рис.2)
СЕ = 1см
S=10см^2
Объяснение:
АВCD — квадрат,
то АВ = ВС = CD = AD = 4 см.
1)Рассмотрим треугольник АDE: EA = 5 см.,
AD = 4 см,
угол АDE = 90 градусов.
Тогда по т. Пифагора находим сторону DE: DE^2 = AE^2 — AD^2 = 25 — 16 = 9,
т. е. DE = 3 см.
Так как сторона СD = DE + EC = 4, следовательно СЕ = СD - DE = 4 - 3 = 1 см.
2) Сначала найдём площадь квадрата АВСD: S (ABCD) = CD^2 = 4 * 4 = 16 см^2.
Теперь находим площадь треугольника ADE: S(ADE) = 1/2 * AD * DE = 1/2 * 4 * 3 = 6 cм^2. Теперь так как S(ABCD) = S(ADE) + S(ABCE),
следовательно S(ABCE) = S(ABCD) — S(ADE) = 16 — 6 = 10 см^2.
ответ: СЕ = 1 см; S(ABCE) = 10 см^2.
к этому заданию рисунок не нужен
решение:
раз трапеция описана вокруг круга, то сумма противоположных сторона равна, значит сумма боковых сторон равна сумме оснований = 6 + 8 = 14 см
средняя линия равна полусумме оснований = 14/2 = 7 см
2)
<BOC = <AOD (вертикальные)
BC ll AD (основания трапеции)
<BCA = <CAD (накрест лежащие)
<CBO = <ODA (накрест лежащие)==>
==> тр.ВОС подобен тр.AOD (по трем углам) (рис.1)
5)
<KAD = <DAK (накрест лежащие)
<DAK = <BAK (АК - биссектриса) ==> <BAK = <BKA==>
==> тр. АВК - равнобедреный и тогда АВ = ВК = 4 см
ВС = ВК + КС = 4 + 6 = 10 см
S abcd = AB * BC = 4 * 10 = 40 см^2(рис.2)