САМОСТОЯТЕЛЬНАЯ РАБОТА по теме
«ЦЕНТРАЛЬНЫЕ И ВПИСАННЫЕ УГЛЫ»
1. Чему равна градусная мера центрального угла окружности, опирающегося на дугу, составляющую 512 окружности?
2. Найдите градусные меры двух дуг окружности, на которые её делят две точки, если градусная мера одной из дуг на 100° больше градусной меры другой.
3. Найдите вписанный угол, если градусная мера дуги, на которую он опирается, равна: 1) 48°; 2) 254°.
4. Точки В и D лежат на окружности по одну сторону от хорды АС. Найдите угол ADC, если ∠ABC = 42°.
5. Точка В окружности и её центр О лежат по разные стороны от хорды АС. Найдите угол АВС, если ∠AOС = 124°.
6. Точки В и D лежат на окружности по разные стороны от хорды АС. Найдите угол ADC, если ∠ABC =78°.
Дана окружность с центром в точке О . Её радиус R=20 см .
АМ и ВМ - касательные к окружности. По свойству, они перпендикулярны радиусу R , то есть АМ⊥ОА и ВМ⊥ОВ .
Дуга ВА=120° ⇒ ∠АОВ=120° ,как центральный угол, опирающийся на дугу ВА .
ОМ - биссектриса ∠АОВ ( по свойству ) ⇒ ∠АОМ=∠ВОМ=120°:2=60°
ΔАОМ - прямоугольный и ∠АМО=180°-90°-60°=30° .
В прямоугольном треугольнике против угла в 30° лежит катет, равный половине гипотенузы ⇒ ОА=1/2*ОМ ⇒
ОМ=2*ОА=2*20=40 см - это расстояние от точки М до центра окружности .
A(2;2) , B(6;6)
1) Чтобы начертить отрезок, симметричный отрезку АВ относительно точки О(0;0) , надо соединить точку О с точками А и В и отложить от точки О отрезки, равные ОА и ОВ . Получим отрезок А1В1 . Рис. 1 .
А1(-2;-2) , В1(-6;-6)
2) 1) Чтобы начертить отрезок, симметричный отрезку АВ относительно точки М(4;0) , надо соединить точку М с точками А и В и отложить от точки М отрезки, равные МА и МВ . Получим отрезок А1В1 . Рис. 1 .
А2(6;-2) , В2(2:-6)
3) 1) Чтобы начертить отрезок, симметричный отрезку АВ относительно точки А(2;2) , надо продлить отрезок АВ и от точки А отложить отрезок, равный отрезку АВ . Получим отрезок АВ3 . Рис. 2.
А(2;2) , В3(-2;-2)