Самостоятельная работа по теме «Решение треугольников»
Вариант 1
1. Две стороны треугольника равны 8 см и у72 см, а угол, противолежащий большей из них,
равен 45°. Найдите третью сторону и другие углы этого треугольника.
2. В треугольнике две стороны равны 6 см и 18 см, а угол между ними – 60°. Найдите третью
сторону треугольника.
3. В треугольнике ABC AC = 0,59 дм, ZA = 40°, 2 c = 35°. Найдите остальные элементы
треугольника.
Стороны треугольника равны 7см, 12 см, 109. Найдите угол, противолежащий средней
стороне треугольника.
1) Находим апофему А как высоту боковой грани.
А = √(6² - (4/2)²) = √(36 - 4) = √32 = 4√2.
Двугранный угол при ребре основания равен плоскому углу между высотами h, проведенными к боковому ребру из точек А и Д в точку М.
По свойству площади треугольника определяем:
А*а = L*h. Отсюда h = А*а/ L = 4√2*4/6 = 8√2/3.
Получаем равнобедренный треугольник с боковыми сторонами АМ и ДМ по 8√2/3 и с основанием АД, равным диагонали квадрата основания 4√2.
Косинус искомого угла М равен:
cos М = ((8√2/3)² + (8√2/3)² - (4√2)²)/(2*(8√2/3)*(8√2/3)) = -1/8.
Угол равен arccos(-1/8) = 1,696 радиан или 97,18 градуса.
2) Угол между плоскостями АВС и BDC1 равен плоскому углу между отрезками, проведенными из точек С и С1 в точку О пересечения диагоналей нижнего основания .
СО = √((2/2)² + (3/2)²) = √(1 + (9/4)) = √13/2.
ответ: tg(COC1) = CC1/CO = 4/(√13/2) = 8/√13 = 8√13/13.
--------------
Пусть основание треугольника АВС = 2а
И угол при основании Ф
АР = а
АН = а*cos Ф
КН = а*sin Ф
s(АКН) = 1/2 a^2*sin Ф*cos Ф = 1
--------------------
Теперь вычислим площадь треугольника АВС
Высота треугольника ВР
ВР/АР = tg Ф
ВР = а*tg Ф
Основание АС = 2а
s(АВС) = 1/2*2а*а*tg Ф = а^2*tg Ф = 4
---------------
Осталось решить систему уравнений
1/2 a^2*sin Ф*cos Ф = 1
а^2*tg Ф = 4
разделим первое на второе
1/2 sin Ф*cos Ф / tg Ф = 1/4
sin Ф*cos Ф / (sin Ф/cos Ф) = 1/2
cos^2 Ф = 1/2
cos Ф = 1/√2
Ф = 45°