ответ:Номер 1
(180-25):2=155:2=77,5
<СВ=77,5 градусов
<АС=77,5+25=102,5 градусов
Номер 2
<МК-8Х
<КN=X
8X+X=180
9X=180
X=180:9
X=20
<MK=8•20=160 градусов
<KN=20 градусов
Номер 3
4+5=9 частей
Одна часть равна
180:9=20
<CDB=20•4=80 градусов
<АDC=20•5=100 градусов
Номер 4
<МРК=2,6 Х
<КРN=X
2,6X+X=180
3,6X=180
X=180:3,6
X=50
<MPK=2,6•50
<MPK=130 градусов
<КРN=50 градусов
Номер 6
<МКС=180-40+20=160 градусов
Номер 5
<РLR-100%
<PLS=80%
100%+80%0180
180%=180
1%=180:180
1%=1 градус
<РLR=1•100=100 градусов
<РLS=1•80=80 градусов
Объяснение:
Площадь прямоугольного треугольника равна 84 дм², а радиус окружности, вписанной в этот треугольник, 3см. Найти катеты треугольника.
Пусть дан треугольник АВС, угол С=90º
Точки касания вписанной окружности на АС- точка К, на ВС - точка Н, на гипотенузе АВ- точка М.
Пусть АК=х, ВН=у.
Тогда по свойству отрезков касательных из одной точки АМ=х, ВМ=у
АВ=х+у
АС=х+3, ВС=у+3
Формула радиуса вписанной окружности
r=S:p, где r -радиус, S - площадь треугольника. р- его полупериметр
р=х+у+3
3=84:(х+у+3)
х+у+3=28⇒
х+у=25
у=25-х
АВ=х+у=25 дм
АС=х+3
ВС=25-х+3=28-х
По т.Пифагора
(х+3)²+(28-х)²=625
Произведя вычисления и приведя подобные члены, получим квадратное уравнение
х²-25х+84=0
D=25²-4·84=289
Решив уравнение, найдем два корня: 21 и 4
АС=21+3=24 дм
ВС=28-21=7 дм
Кстати, длины сторон этого треугольника из Пифагоровых троек, где стороны относятся как 7:24:25
ответ:Номер 1
(180-25):2=155:2=77,5
<СВ=77,5 градусов
<АС=77,5+25=102,5 градусов
Номер 2
<МК-8Х
<КN=X
8X+X=180
9X=180
X=180:9
X=20
<MK=8•20=160 градусов
<KN=20 градусов
Номер 3
4+5=9 частей
Одна часть равна
180:9=20
<CDB=20•4=80 градусов
<АDC=20•5=100 градусов
Номер 4
<МРК=2,6 Х
<КРN=X
2,6X+X=180
3,6X=180
X=180:3,6
X=50
<MPK=2,6•50
<MPK=130 градусов
<КРN=50 градусов
Номер 6
<МКС=180-40+20=160 градусов
Номер 5
<РLR-100%
<PLS=80%
100%+80%0180
180%=180
1%=180:180
1%=1 градус
<РLR=1•100=100 градусов
<РLS=1•80=80 градусов
Объяснение:
Площадь прямоугольного треугольника равна 84 дм², а радиус окружности, вписанной в этот треугольник, 3см. Найти катеты треугольника.
Пусть дан треугольник АВС, угол С=90º
Точки касания вписанной окружности на АС- точка К, на ВС - точка Н, на гипотенузе АВ- точка М.
Пусть АК=х, ВН=у.
Тогда по свойству отрезков касательных из одной точки АМ=х, ВМ=у
АВ=х+у
АС=х+3, ВС=у+3
Формула радиуса вписанной окружности
r=S:p, где r -радиус, S - площадь треугольника. р- его полупериметр
р=х+у+3
3=84:(х+у+3)
х+у+3=28⇒
х+у=25
у=25-х
АВ=х+у=25 дм
АС=х+3
ВС=25-х+3=28-х
По т.Пифагора
(х+3)²+(28-х)²=625
Произведя вычисления и приведя подобные члены, получим квадратное уравнение
х²-25х+84=0
D=25²-4·84=289
Решив уравнение, найдем два корня: 21 и 4
АС=21+3=24 дм
ВС=28-21=7 дм
Кстати, длины сторон этого треугольника из Пифагоровых троек, где стороны относятся как 7:24:25