Сумма углов,прилежащих к одной стороне параллерограмма, равна 180°. Значит, острый угол равен 180-135=45°; Высота, боковая сторона и половина стороны, на которую опущена высота образуют прямоугольный треугольник. В этом треугольнике два острых угла равны по 45°,значит этот треугольник равнобедренный. Боковые стороны равны, значит половина стороны на которую опущена высота равна этой высоте и равна 4 см. А вся эта сторона равна 4*2=8 см; Боковая сторона параллерограмма равна: а²=4²+4²; а=√32=4√2 см; Периметр равен Р=8+8+4√2+4√2=16+8√2 см; Площадь равна: S=4*8=32 см²;
На чертеже цифрами 1,2,3,4,5,6 я обозначил маленькие треугольнички, на которые разбивают исходный треугольник три медианы. Рассмотрим, например, медиану, опущенную из угла А. Она разбивает исходный треугольник на две тройки треугольников: 1,2,6 и 3,4,5. Поскольку площадь треугольника это половина произведения высоты на основание, треугольники 5 и 6 равновелики. По той же причине сумма площадей треугольников 1,2,6 и 3,4,5 тоже равны. А значит равны и суммы площадей 1,2 и 3,4. Но это треугольники АОБ и АОС. Значит они равновелики. Так же доказывается и равенство площади треугольника БОС.
Значит, острый угол равен 180-135=45°;
Высота, боковая сторона и половина стороны, на которую опущена высота образуют прямоугольный треугольник. В этом треугольнике два острых угла равны по 45°,значит этот треугольник равнобедренный. Боковые стороны равны, значит половина стороны на которую опущена высота равна этой высоте и равна 4 см. А вся эта сторона равна 4*2=8 см;
Боковая сторона параллерограмма равна: а²=4²+4²; а=√32=4√2 см;
Периметр равен Р=8+8+4√2+4√2=16+8√2 см;
Площадь равна: S=4*8=32 см²;
Так же доказывается и равенство площади треугольника БОС.