Сделать чертеж: «В треугольнике АВС провели средние линии MN, MK, KN. Найдите периметр и площадь треугольника MNK, если периметр треугольника АВС равен 40 см, а его площадь равна 60 см2
1) Рассмотрим 2 треугольника: АВВ1, АОС1: - оба прямоугольные - уголВАО общий известно, что сумма острых углов прямоугольного треугольника величина постоянная (равна π/2), или: уголАВВ1+уголВАВ1=уголАОС1+уголС1АО(=π/2), очевидно: уголВАВ1≡уголС1АО(≡ВАО), уголАВВ1≡уголАВС, уголАОС1≡уголАОС⇒получаем: уголАВС+уголВАО=уголАОС+уголВАО, уголАВС=уголАОС, ч.т.д
или вот так: уголВСС1=уголОСВ1 (вертикальные при пересекающихся ОС1иВВ1)) Тогда π/2-уголВСС1=π/2-уголОСВ1, а из треугольников(прямоугольных) ΔВСС1, ΔОСВ1 получим, что эти углы равны тем которые нам надо сравнить: уголАВС=уголАОС, ч.т.д
2) это утверждение верно, только если АС=СВ, то есть нам дан равнобедренный тупоугольный треугольник.
Рассмотрим 2 треугольника: АВВ1, АОС1:
- оба прямоугольные
- уголВАО общий
известно, что сумма острых углов прямоугольного треугольника величина постоянная (равна π/2), или:
уголАВВ1+уголВАВ1=уголАОС1+уголС1АО(=π/2),
очевидно: уголВАВ1≡уголС1АО(≡ВАО), уголАВВ1≡уголАВС, уголАОС1≡уголАОС⇒получаем:
уголАВС+уголВАО=уголАОС+уголВАО,
уголАВС=уголАОС, ч.т.д
или вот так:
уголВСС1=уголОСВ1 (вертикальные при пересекающихся ОС1иВВ1))
Тогда π/2-уголВСС1=π/2-уголОСВ1,
а из треугольников(прямоугольных) ΔВСС1, ΔОСВ1 получим, что эти углы равны тем которые нам надо сравнить:
уголАВС=уголАОС, ч.т.д
2) это утверждение верно, только если АС=СВ, то есть нам дан равнобедренный тупоугольный треугольник.
Высота Н трапеции равна:
Н = √(АВ² - (9-4)²) = √169 - 25) = √144 = 12.
Площадь S трапеции равна:
S = 12*((7+21)/2) = 12*14 = 168 кв.ед.
Объяснение:
Соединим центр окружности с вершинами трапеции и с точками касания.
Имеем подобные треугольники AOE и ОКВ, а также ДОЕ и ОСР (их стороны взаимно перпендикулярны).
Находим отрезки сторон у вершин до точки касания: х = ВК, у = СР.
6/12 = х/6, х = 6*6/12 = 3.
6/9 = у/6, у = 6*6/9 = 4.
Отсюда получаем длины сторон:
АВ = 9+4 = 13,
ВС 0 4+3 = 7,
СД = 12+3 = 15.
Высота Н трапеции равна:
Н = √(АВ² - (9-4)²) = √169 - 25) = √144 = 12.
Площадь S трапеции равна:
S = 12*((7+21)/2) = 12*14 = 168 кв.ед.