ответ:Все грани прямоугольного параллелепипеда - прямоугольники.
Двугранный угол DABD₁ - это угол между плоскостями DAB и ABD₁.
АВ - ребро двугранного угла.
DA⊥AB как стороны квадрата,
DA - проекция наклонной D₁A на плоскость DAB, значит
D₁A⊥АВ по теореме о трех перпендикулярах.
DA⊥AB и D₁A⊥АВ,, значит ∠D₁AD - линейный угол двугранного угла D₁ABD.
ΔADC: ∠ADC = 90°, по теореме Пифагора
AD = √(AC² - CD²) = √(100 - 36) = √64 = 8 дм
ΔD₁AD: ∠D₁DA = 90°, DD₁ = AA₁ = 8√3 дм, AD = 8 дм,
tg∠D₁AD = D₁D / AD = 8√3 / 8 = √3
∠D₁AD = 60°
Объяснение:
Рис. 1
1) ∠ ВАС - смежный с углом в 110 °.
Сумма смежных углов = 180 °, т. е.
110 ° + ∠ ВАС = 180 °, откуда
∠ ВАС = 180 ° - 110 ° = 70°
2) Сумма углов треугольника = 180°, т.е.
∠ ВАС + ∠ АВС + ∠ ВСА = 180° или
70° + 40° + ∠ ВСА = 180°, откуда
∠ ВСА = 180° - 70° -40° = 70°
△ АВС - равнобедренный по 2-м углам, АВ=ВС
ответ: ∠ ВАС = 70°, ∠ ВСА = 70°, ∠ АВС = 40°.
рис.2
∠АВС = 180° - 160° = 30° (т.к. эти углы смежные, и их сумма =180°)
∠САВ = 180° -90° -30° = 60°
Рис.3
∠ВСА = 180° -150° = 30°
т.к. АВ=ВС по условию, то △ АВС - равнобедренный, а значит,
∠ВСА = ∠ВАС = 30°
Т.к. сумма углов в треугольнике равна 180°, то
∠В = 180 -2*30° = 120°
рис.4
∠АВС = 180° - 140° = 40° (как смежные)
∠ВСА = 180° - 110° = 70° (как смежные)
∠А = 180° -70° - 40° = 70°
Рис.5
∠ВАС = 40° (? не очень понятно) (как вертикальные углы)
∠ВСА = 180° - 65° (?) = 115° (как смежные)
∠АВС =180° - 115° -40° = 25°
Рис.6
∠ВСА = ∠ВАС = = (180° - 30°)/2 = 75°
(непонятно ∠АВС = 30° или половина угла = 30°. Здесь решение для ∠АВС = 30°)
Рис.7
∠ВСА = 180° - (70° + 40°) = 70°
Т.к. АВ || ВС, то накрест лежащие углы равны, т.е.
∠АВС = ∠ВСD = 70°
Из равенств видно,что ∠АВС = ∠ВСА = 70°, следовательно,
∠А = 180° - 2*70° = 180° - 140° = 40°
∠АВС = ∠ВСА = 70°,
ответ:Все грани прямоугольного параллелепипеда - прямоугольники.
Двугранный угол DABD₁ - это угол между плоскостями DAB и ABD₁.
АВ - ребро двугранного угла.
DA⊥AB как стороны квадрата,
DA - проекция наклонной D₁A на плоскость DAB, значит
D₁A⊥АВ по теореме о трех перпендикулярах.
DA⊥AB и D₁A⊥АВ,, значит ∠D₁AD - линейный угол двугранного угла D₁ABD.
ΔADC: ∠ADC = 90°, по теореме Пифагора
AD = √(AC² - CD²) = √(100 - 36) = √64 = 8 дм
ΔD₁AD: ∠D₁DA = 90°, DD₁ = AA₁ = 8√3 дм, AD = 8 дм,
tg∠D₁AD = D₁D / AD = 8√3 / 8 = √3
∠D₁AD = 60°
Объяснение:
Объяснение:
Рис. 1
1) ∠ ВАС - смежный с углом в 110 °.
Сумма смежных углов = 180 °, т. е.
110 ° + ∠ ВАС = 180 °, откуда
∠ ВАС = 180 ° - 110 ° = 70°
2) Сумма углов треугольника = 180°, т.е.
∠ ВАС + ∠ АВС + ∠ ВСА = 180° или
70° + 40° + ∠ ВСА = 180°, откуда
∠ ВСА = 180° - 70° -40° = 70°
△ АВС - равнобедренный по 2-м углам, АВ=ВС
ответ: ∠ ВАС = 70°, ∠ ВСА = 70°, ∠ АВС = 40°.
рис.2
∠АВС = 180° - 160° = 30° (т.к. эти углы смежные, и их сумма =180°)
∠САВ = 180° -90° -30° = 60°
Рис.3
∠ВСА = 180° -150° = 30°
т.к. АВ=ВС по условию, то △ АВС - равнобедренный, а значит,
∠ВСА = ∠ВАС = 30°
Т.к. сумма углов в треугольнике равна 180°, то
∠В = 180 -2*30° = 120°
рис.4
∠АВС = 180° - 140° = 40° (как смежные)
∠ВСА = 180° - 110° = 70° (как смежные)
∠А = 180° -70° - 40° = 70°
Рис.5
∠ВАС = 40° (? не очень понятно) (как вертикальные углы)
∠ВСА = 180° - 65° (?) = 115° (как смежные)
∠АВС =180° - 115° -40° = 25°
Рис.6
т.к. АВ=ВС по условию, то △ АВС - равнобедренный, а значит,
∠ВСА = ∠ВАС = = (180° - 30°)/2 = 75°
(непонятно ∠АВС = 30° или половина угла = 30°. Здесь решение для ∠АВС = 30°)
Рис.7
∠ВСА = 180° - (70° + 40°) = 70°
Т.к. АВ || ВС, то накрест лежащие углы равны, т.е.
∠АВС = ∠ВСD = 70°
Из равенств видно,что ∠АВС = ∠ВСА = 70°, следовательно,
∠А = 180° - 2*70° = 180° - 140° = 40°
∠АВС = ∠ВСА = 70°,