Пусть a и b - меньшая и большая соответственно сторона второго треугольника. Исходя их того, что треугольники подобны, то суммы меньшей и большей стороны первого треугольника и меньшей и большей стороны второго треугольника будут относиться как коэффициент подобия. (3 + 8)/(a + b) = k Но по условию a + b = 22, поэтому 11/22 = k k = 1/2. Значит, сходственные стороны первого треугольника относятся к сходственные сторонам второго как 1:2. Тогда стороны второго треугольника равны: 2•3 см = 6 см 2•6 см = 12 см 2•8 см = 16 см.
ответ:1) 105°, 85°, 105°, 85°. 2)115°, 65°, 115°, 65°.
Объяснение:
1) Сумма углов, прилегающих к одной из сторон, равна 180°.
По условию сумма двух углов равна 210°, значит они противоположные, т. к. 210° > 180°.
Противоположные углы ромба равны ⇒ 210°:2=105°.
180°-105°=85°.
ответ: 105°, 85°, 105°, 85°.
2) Пусть х° - больший угол, тогда (х°-50°) - больший угол ромба.
Сумма двух углов ромба, прилегающих к одной стороне, равна 180°.
Составим уравнение:
х+х-50=180, 2х=230, х=115. х-50=65.
ответ: 115°, 65°, 115°, 65°.
Исходя их того, что треугольники подобны, то суммы меньшей и большей стороны первого треугольника и меньшей и большей стороны второго треугольника будут относиться как коэффициент подобия.
(3 + 8)/(a + b) = k
Но по условию a + b = 22, поэтому
11/22 = k
k = 1/2.
Значит, сходственные стороны первого треугольника относятся к сходственные сторонам второго как 1:2.
Тогда стороны второго треугольника равны:
2•3 см = 6 см
2•6 см = 12 см
2•8 см = 16 см.