Недочет в условии: середины двух ПАРАЛЛЕЛЬНЫХ хорд. перпендикуляр, опущенный на первую хорду делит ее пополам(то есть является серединным перпендикуляром к хорде). если опустить из центра окружности на другую хорду перпендикуляр, результат тот же получим. получается, что из одной точки проведены два перпендикуляра к параллельным прямым. докажем, что они совпадают(прямые, содержащие перпендикуляры, совпадают - имеется в виду). если из точки опущен перпендикуляр на одну из параллельных прямых, то он будет являться перпендикуляром и к другой прямой >> перпендикуляры совпадают >> прямая, содержащая середины двух параллельных хорд окружности, проходит через центр окружности, что и требовалось доказать.
1) Давай с чертежом разберёмся. Трапеция АВСD. Основания АD (нижнее) и ВС( верхнее), Угол А = 60, угол В = 120, Точка О - центр окружности. Из точки О проведём перпендикуляр к ВС ( радиус) Появилась точка К. ΔВОК прямоугольный с углом 60 и 30 ( весь угол В = 120) 2) Из В опустим высоту ВМ. ΔАВМ прямоугольный с гипотенузой = а и углом 30 АМ = а/2 по т Пифагора ВМ = а√3/2 ( это высота трапеции) 3) ΔВКО КО = а√3/4 (половина ВМ) ВК =х ВО = 2х Составим по т. Пифагора 3х² = 3а²/16⇒ х² = а²/16⇒х = а/4 4) ВC = а/2, АD=3а/2 5) Площадь трапеции = произведению полусуммы оснований на высоту. S =(а/2 + 3а/2)·а√3/2 :2 = 2а ·а√3/2 :2 = а²√3/2
перпендикуляр, опущенный на первую хорду делит ее пополам(то есть является серединным перпендикуляром к хорде). если опустить из центра окружности на другую хорду перпендикуляр, результат тот же получим. получается, что из одной точки проведены два перпендикуляра к параллельным прямым. докажем, что они совпадают(прямые, содержащие перпендикуляры, совпадают - имеется в виду). если из точки опущен перпендикуляр на одну из параллельных прямых, то он будет являться перпендикуляром и к другой прямой >> перпендикуляры совпадают >> прямая, содержащая середины двух параллельных хорд окружности, проходит через центр окружности, что и требовалось доказать.
и ВС( верхнее), Угол А = 60, угол В = 120, Точка О - центр окружности. Из точки О проведём перпендикуляр к ВС ( радиус) Появилась точка К. ΔВОК прямоугольный с углом 60 и 30 ( весь угол В = 120)
2) Из В опустим высоту ВМ.
ΔАВМ прямоугольный с гипотенузой = а и углом 30
АМ = а/2 по т Пифагора ВМ = а√3/2 ( это высота трапеции)
3) ΔВКО
КО = а√3/4 (половина ВМ) ВК =х ВО = 2х
Составим по т. Пифагора 3х² = 3а²/16⇒ х² = а²/16⇒х = а/4
4) ВC = а/2, АD=3а/2
5) Площадь трапеции = произведению полусуммы оснований на высоту.
S =(а/2 + 3а/2)·а√3/2 :2 = 2а ·а√3/2 :2 = а²√3/2