ответ: 1. 21°; 2. 11,5м; 3. 128; 4. 9 и 81°; 5. 36,5 и 53,5°
Объяснение: 1. В прямоугольном треугольнике сумма острых углов равна 90°. ∠Е=69°, значит ∠М=90-69=21°
2. В прямоугольном треугольнике катет, лежащий против ∠30° равен половине гипотенузы: СР=ЕР/2=23/2=11,5м
3. В прямоугольном треугольнике сумма острых углов равна 90° и катет, лежащий против угла 30° равен половине гипотенузы. ∠D=90-60=30°; МD=СМ*2=64*2=128;
4. Для решения этой задачи примем один острый угол за 3 части, а второй за 27 частей. Тогда сумма их равна: 3+27=30частей, а сумма этих углов равна 90°. Узнаем сколько градусов приходится на 1 часть: 90/30=3°. Значит один угол равен 3*3=9°, а второй 3*27=81°;
Для решения этой задачи примем меньший угол за х, тогда больший угол будет равен х+17. Составим уравнение:
Объяснение:
1)M=180-E-A=180-69-90=21
2)CP=11,5 ,т.к. катет прямоугольного треугольника,лежащий против угла в 30°,равен половине гипотенузы
3)MD=32,т.к. угол D=30° => MD=½CM (катет прямоугольного треугольника,лежащий против угла в 30°,равен половине гипотенузы)
4)прямой угол=90°,значит
23х+7х=90
х=3 => 23х=69,а 7х=21
5)Составим уравнение
x+(x-17)+90=180
2x=107
x=53,5 => углы равны 53,5°, 36,5° ,90°
ответ: 1. 21°; 2. 11,5м; 3. 128; 4. 9 и 81°; 5. 36,5 и 53,5°
Объяснение: 1. В прямоугольном треугольнике сумма острых углов равна 90°. ∠Е=69°, значит ∠М=90-69=21°
2. В прямоугольном треугольнике катет, лежащий против ∠30° равен половине гипотенузы: СР=ЕР/2=23/2=11,5м
3. В прямоугольном треугольнике сумма острых углов равна 90° и катет, лежащий против угла 30° равен половине гипотенузы. ∠D=90-60=30°; МD=СМ*2=64*2=128;
4. Для решения этой задачи примем один острый угол за 3 части, а второй за 27 частей. Тогда сумма их равна: 3+27=30частей, а сумма этих углов равна 90°. Узнаем сколько градусов приходится на 1 часть: 90/30=3°. Значит один угол равен 3*3=9°, а второй 3*27=81°;
Для решения этой задачи примем меньший угол за х, тогда больший угол будет равен х+17. Составим уравнение:
х+(х+17)=90; 2х=90-17=73
х=73/2=36,5°;
второй угол=90-36,5=53,5°