Если развернуть цилиндр получится прямоугольник, значит площадь боковой поверхности цилиндра-площадь прямоугольника, которая находится длина умножить на ширину (a*b)
Длина - образующая, ширина-радиус или половина диаметра.
S(бок) = 4*6=24 cм2
Площадь полной поверхности это сумма площади боковой поверхности и двух площадей окружностей(оснований цилиндра)
S(осн)=ПR^2=16П cм^2
S(полн)=2*S(осн)+S(бок)=32П+24 см^2
Объем цилиндра умноженная площадь основания на высоту(или образующую)
В равнобедренном треугольнике АВС точки К и М являются серединами боковой стороны АВ и ВС соответственно. ВД – медиана треугольника. Доказать, что ∆ ВКД = ∆ ВМД
ВД по свойству медианы равнобедренного треугольника, в котором АВ=ВС, является еще биссектрисой угла В и высотой к основанию АС
∠АВД=∠СВД,
В треугольниках ВКД и ВМД углы при В равны ( ВД - биссектриса угла АВС)
Стороны КВ и МВ равны ( т.к. КМ делит равные АВ и ВС пополам).
ВД - их общая сторона
В ∆ КВД и ∆ МВД равны две стороны и угол, заключенный между ними.
По первому признаку равенства треугольников ∆ КВД = ∆ МВД, что и требовалось доказать.
V=S(осн)*H=16П*6=96П см^3
S(полн)=2*S(осн)+S(бок)=32П+24 см^2
Объяснение:
Если развернуть цилиндр получится прямоугольник, значит площадь боковой поверхности цилиндра-площадь прямоугольника, которая находится длина умножить на ширину (a*b)
Длина - образующая, ширина-радиус или половина диаметра.
S(бок) = 4*6=24 cм2
Площадь полной поверхности это сумма площади боковой поверхности и двух площадей окружностей(оснований цилиндра)
S(осн)=ПR^2=16П cм^2
S(полн)=2*S(осн)+S(бок)=32П+24 см^2
Объем цилиндра умноженная площадь основания на высоту(или образующую)
V=S(осн)*H=16П*6=96П см^3
В равнобедренном треугольнике АВС точки К и М являются серединами боковой стороны АВ и ВС соответственно. ВД – медиана треугольника. Доказать, что ∆ ВКД = ∆ ВМД
ВД по свойству медианы равнобедренного треугольника, в котором АВ=ВС, является еще биссектрисой угла В и высотой к основанию АС
∠АВД=∠СВД,
В треугольниках ВКД и ВМД углы при В равны ( ВД - биссектриса угла АВС)
Стороны КВ и МВ равны ( т.к. КМ делит равные АВ и ВС пополам).
ВД - их общая сторона
В ∆ КВД и ∆ МВД равны две стороны и угол, заключенный между ними.
По первому признаку равенства треугольников ∆ КВД = ∆ МВД, что и требовалось доказать.