Ромб АВСД, АВ=ВС=СД=АД=8, радиус=2*корень3, проводим перпендикуляры в точки касания ОН на АД и ОМ на АВ, ОН в квадрате=АН*НД - (это уравнение получается из отношения сторон подобных треугольников, треугольник АОН подобен треугольнику НОД как прямоугольные по равным острым углам - угол АОН=90-1/углаА=90-30=60, уголНДО)=1/2 углаД=(180-60)/2=60, тогда АН/ОН=ОН/НД или ОН в квадрате=АН*НД), НД=х, АН=8-х, 12=(8-х)*х, х в квадрате-8х+12=0, х=(8+-корень(64-4*12))/2=8+-4/2, х1=2=НД, х2=6=АН, АН=АМ-как касательные проведенные из одной точки=6, треугольник АМН равнобедренный, но уголА=60, а уголАМН=уголАНМ=(180-60)/2=60, треугольник равносторониий, МН=АН=АМ=6
Прямые АВ и CD не параллельные, то есть пересекающиеся. Дано: угол ABC = угол BCD = Д-ть АВ не параллельно CD Решение1) Предположим, что прямые АВ и СD параллельны. Тогда угол АВС = углу BCD = (как при параллельных прямых АВ и CD и секущей BC)2) Так как сумма углов в треугольнике равна (по теореме о сумме углов в треугольнике), мы приходим к противоречию с первым пунктом моего решения так как угол СВD и угол ВСD в сумме уже дают 3) Мы пришли к противоречию, значит наше предположение не верно, и значит прямая АВ не параллельна CD. Ч.т.