Свойство пересекающихся хорд: Произведения длин отрезков, на которые разбита точкой пересечения каждая из хорд, равны. Пусть это будут хорды АВ и СМ, Е -точка их пересечения. АЕ=ВЕ, СЕ=3, МЕ=12 Сделаем рисунок. Соединим А и М, С и В. Рассмотрим получившиеся треугольники АЕМ и ВЕС Они имеют два угла, опирающихся на одну и ту же дугу, следовательно, эти углы равны. Третий их угол также равен. ⇒ Треугольники АЕМ и ВЕС подобны Из подобия следует отношение: АЕ:СЕ=МЕ:ВЕ АЕ*ВЕ=СЕ*МЕ Так как АЕ=ВЕ, то АЕ²=3*12=36 АЕ=√36=6, АВ=2 АЕ=12 см
Произведения длин отрезков, на которые разбита точкой пересечения каждая из хорд, равны.
Пусть это будут хорды АВ и СМ, Е -точка их пересечения.
АЕ=ВЕ, СЕ=3, МЕ=12
Сделаем рисунок. Соединим А и М, С и В.
Рассмотрим получившиеся треугольники АЕМ и ВЕС
Они имеют два угла, опирающихся на одну и ту же дугу, следовательно, эти углы равны. Третий их угол также равен. ⇒
Треугольники АЕМ и ВЕС подобны
Из подобия следует отношение:
АЕ:СЕ=МЕ:ВЕ
АЕ*ВЕ=СЕ*МЕ
Так как АЕ=ВЕ, то
АЕ²=3*12=36
АЕ=√36=6,
АВ=2 АЕ=12 см
№1
0,25
№2
81x⁴-108x³√6+324x²-72x√6+36
№3
10
Пошаговое объяснение:
№1
0,5sin(-1650°)=-0,5sin(4*360°+210°)=-0,5sin(210°)=-0,5sin(180°+30°)=-0,5sin(-30°)=0,5*sin(30°) =0,5*0,5=0,25
№2
найдем коэффициенты бинома Ньютона из треугольника Паскаля (смотри картинку). Так как у нас 4-я степень, то коэффициенты будут 1,4,6,4,1
Получаем формулу (x+y)⁴=x⁴+4x³y+6x²y²+4xy³+y⁴
у нас x=√6, y=-3x
(√6-3x)⁴=(√6)⁴+4(√6)³*(-3x)+6(√6)²(-3x)²+4(√6)(-3x)³+(-3x)⁴=36-4*6√6*3x+6*6*9x²-4√6*27x³+81x⁴= 36-72x√6+324x²-108x³√6+81x⁴
=81x⁴-108x³√6+324x²-72x√6+36
№3
\begin{gathered}\sqrt{12+\sqrt{44} } *\sqrt{12-\sqrt{44} } = \sqrt{(12+\sqrt{44})(12-\sqrt{44}) } =\sqrt{12^2-(\sqrt{44})^2 }=\\ = \sqrt{144-44 }=\sqrt{100} =10\end{gathered}
12+
44
∗
12−
44
=
(12+
44
)(12−
44
)
=
12
2
−(
44
)
2
=
=
144−44
=
100
=10