Несмотря на то, что прямоугольный треугольник, сторонами которого являются высота, медиана и отрезок гипотенузы между ними, является Пифагоровым (8, 15,17), и высота делит гипотенузу, длина которой равна 17*2 = 34, на отрезки длиной 17 - 8 = 9 и 17 + 8 = 25 (как и положено, 9*25 = 15^2), сам треугольник не является целочисленным, и его катеты надо просто вычислить по теореме Пифагора.
Дан ромб АВСД. У ромба все стороны равны. И равны Р/4=80/4=20.Диагонали пусть будут равны АС=3х и ВД=4х.
Диагонали ромба пересекаются под прямым углом, делятся пополам точкой пересечения О и соответственно образуют 4 равных прямоугольных треугольника. Рассмотрим один из них АОВ. Применим теорему Пифагора
АВ²=АО²+ВО²
20²=(1,5х)²+(2х)²
400=2,25х²+4х²
6,25х²=400
х=20/2,5
х=8
Значит катеты равны
АО=1,5х=12 см
ВО=2х=16 см
Найдем острые углы через тангенс
tg<A=BO/AO=16/12=4/3 (53°)
tg<B=AO/BO=12/16=3/4 (37°)
острые углы треугольника равны половине углов ромба, поэтому углы ромба равны 106° и 74°
Несмотря на то, что прямоугольный треугольник, сторонами которого являются высота, медиана и отрезок гипотенузы между ними, является Пифагоровым (8, 15,17), и высота делит гипотенузу, длина которой равна 17*2 = 34, на отрезки длиной 17 - 8 = 9 и 17 + 8 = 25 (как и положено, 9*25 = 15^2), сам треугольник не является целочисленным, и его катеты надо просто вычислить по теореме Пифагора.
Меньший катет равен √(9^2 + 15^2) = 3*√34;
Больший катет равен √(25^2 + 15^2) = 5*√34;
Ну да, еще периметр 34 + 8*√34 ;
Дан ромб АВСД. У ромба все стороны равны. И равны Р/4=80/4=20.Диагонали пусть будут равны АС=3х и ВД=4х.
Диагонали ромба пересекаются под прямым углом, делятся пополам точкой пересечения О и соответственно образуют 4 равных прямоугольных треугольника. Рассмотрим один из них АОВ. Применим теорему Пифагора
АВ²=АО²+ВО²
20²=(1,5х)²+(2х)²
400=2,25х²+4х²
6,25х²=400
х=20/2,5
х=8
Значит катеты равны
АО=1,5х=12 см
ВО=2х=16 см
Найдем острые углы через тангенс
tg<A=BO/AO=16/12=4/3 (53°)
tg<B=AO/BO=12/16=3/4 (37°)
острые углы треугольника равны половине углов ромба, поэтому углы ромба равны 106° и 74°
Диагонали ромба равны 3х=24 см и 4х=32 см