1) Вначале рассмотрим тр-ки АВК и ДВМ. Они прямоугольные, т. к. ВК и ВМ - перпендикуляры по условию. АВ=ВС - у ромба все стороны равны между собой. Угол А = углу С - как противоположные углы ромба. Значит тр-ки равны по гипотенузе и острому углу. В равных тр-ках соответственные стороны равны, т. е. ВК=ВМ. АК=МС 2) Теперь рассмотрим тр-ки КВД и ДВМ. Они прямоугольные, ВД - общая сторона. ВК=ВМ из п. 1. Значит тр-ки равны по гипотенузе и катету. Отсюда КД=ДМ. А против равных сторон в равных тр-ках лежать равные углы, т. е. угол КВД=углуДВМ. Вывод ВД - луч, который разделил угол КВД на два равных угла, т. е. ВД-биссектриса, ч. т. д.
Треугольник существует тогда и только тогда, когда сумма двух любых его сторон больше, чем третья сторона.
Т.к. в равнобедренном треугольнике боковые стороны равны, то для него достаточно соблюдения двух условий:
а+а>c ⇒ 2a>c
a+c>a
где а - боковая сторона ; с - основание треугольника.
1) а=3 см ; с =9 см
2 * 3 = 6 < 9
3 + 9 = 12 > 3
данного треугольника не существует.
2) а= 9 см ; с= 3 см
2*9 = 18 > 3
9 + 3 =12 > 9
данный треугольник существует ⇒ третья сторона 9 см.
ответ: 9 см.
Объяснение:
АВ=ВС - у ромба все стороны равны между собой.
Угол А = углу С - как противоположные углы ромба.
Значит тр-ки равны по гипотенузе и острому углу.
В равных тр-ках соответственные стороны равны, т. е. ВК=ВМ. АК=МС
2) Теперь рассмотрим тр-ки КВД и ДВМ.
Они прямоугольные, ВД - общая сторона.
ВК=ВМ из п. 1. Значит тр-ки равны по гипотенузе и катету.
Отсюда КД=ДМ. А против равных сторон в равных тр-ках лежать равные углы, т. е. угол КВД=углуДВМ. Вывод ВД - луч, который разделил угол КВД на два равных угла, т. е. ВД-биссектриса, ч. т. д.