Сечение, которое параллельно основанию четырёхугольной пирамиды, делит высоту пирамиды в отношении 6 : 11, считая от вершины. Вычисли отношение площади сечения к площади основания пирамиды.
Дано: ABCD - трапеция EF - средняя линия EO = 3 см OF = 4 см Найти: AB Решение. 1) Рассмотрим трапецию ABCD. Средняя линия EF параллельна основаниям AB и DC и делит стороны AD и BC трапеции пополам. 2) Рассмотрим треугольники EOD и ABD. Углы EOD и ABD равны как соответственные при пересечении параллельных прямых EF и AB секущей BD. Угол DBC общий. Следовательно, треугольник BOF подобен BDC. 3) Из подобия треугольников следует, что AB / EO = AD / ED => AB = EO * AD / ED = EO * 2ED / ED = EO * 2 = 6 см.
EF - средняя линия
EO = 3 см
OF = 4 см
Найти: AB
Решение.
1) Рассмотрим трапецию ABCD. Средняя линия EF параллельна основаниям AB и DC и делит стороны AD и BC трапеции пополам.
2) Рассмотрим треугольники EOD и ABD.
Углы EOD и ABD равны как соответственные при пересечении параллельных прямых EF и AB секущей BD.
Угол DBC общий. Следовательно, треугольник BOF подобен BDC.
3) Из подобия треугольников следует, что
AB / EO = AD / ED => AB = EO * AD / ED = EO * 2ED / ED = EO * 2 = 6 см.
а) 1) АВ = AD - по условию
2) AC - общая сторона
3) углы BAC=CAD
Следовательно, треугольники BAC и CAD равны по двум сторонам и углу между ними (по 1 признаку)
б) 1) AO=OC - по условию
2) BO= OD - по условию
3) углы AOB = COD - т.к. они вертикальные
Следовательно треуголбники AOB и COD равны по 1 признаку
в) 1) угол FAC = угол GBE по условиб
Угол DAC = 180 - FAC - т.к. углы DAC и FAC - смежные (сумма смежных углов равна 180)
Угол DBE = 180 - GBE - т.к углы DBE и GBE - смежные.
А т.к. углы FAC и GBE равны, то и углы DBE и DAC равны.
AD= DB, AC = BE - по условию
Следовательно, треугольники ACD и DBE равны по 1 признаку ( по двум сторонам и углу между ними)
г) 1) DC = AB - по условию
2) CB - общая сторона
3) углы ABC и DCB равны по условию
Следовательно треугольники CDB и ABC равны по 1 признаку