Сечение, которое параллельно основанию четырёхугольной пирамиды, делит высоту пирамиды в отношении 10 : 15, считая от вершины. Вычисли отношение площади сечения к площади основания пирамиды.
Сельское хозяйство зарубежной европы: доля активного населения после второй мировой войны в государств этого региона произошли серьезные изменения. доля активного населения, занятого в сельском хозяйстве, значительно снизилась. связано это было с развитием новых интенсивных методов производства, повышением благосостояния населения и многими другими факторами. однако серьезные различия между отдельными странами в этом плане сохранились. к примеру, в великобритании на 2005 год в сельскохозяйственной области было занято около 1,4% всего активного населения, в португалии – 19%, а в румынии – 42%. похожая ситуация сохраняется и сегодня - читайте подробнее на fb.ru:
1) 1. Отрезки делятся пополам, значит, KP =РМ, PN = LP, ∡ КPN = ∡ MPL, так как прямые перпендикулярны и оба угла равны 90°. По первому признаку равенства треугольник KPN равен треугольнику MPL.
2. В равных треугольниках соответствующие углы равны. В этих треугольниках соответствующие ∡ К и ∡ M, ∡ N и∡ L. ∡ K = 30°; ∡ N = 60°. ответ. ∡ K = 30°; ∡ N = 60°.
2) 1. Если AB = DE, BC = EF, В = Е, то ΔABC=ΔDEF по первому признаку.
2. AB = DE, BC = EF, CA=FD, то ΔABC=ΔDEF по третьему признаку.
3. AC = DF, ∡ A = ∡ D, С = F, то ΔABC=ΔDEF по второму признаку.
4. AC = DF, ∡ A = ∡ D, AB = DE, то ΔABC=ΔDEF по первому признаку.
5. ∡ B = ∡ E, ∡ C = ∡ F, BC = EF, то ΔABC=ΔDEF по второму признаку.
1) 1. Отрезки делятся пополам, значит, KP =РМ, PN = LP, ∡ КPN = ∡ MPL, так как прямые перпендикулярны и оба угла равны 90°. По первому признаку равенства треугольник KPN равен треугольнику MPL.
2. В равных треугольниках соответствующие углы равны. В этих треугольниках соответствующие ∡ К и ∡ M, ∡ N и∡ L. ∡ K = 30°; ∡ N = 60°. ответ. ∡ K = 30°; ∡ N = 60°.
2) 1. Если AB = DE, BC = EF, В = Е, то ΔABC=ΔDEF по первому признаку.
2. AB = DE, BC = EF, CA=FD, то ΔABC=ΔDEF по третьему признаку.
3. AC = DF, ∡ A = ∡ D, С = F, то ΔABC=ΔDEF по второму признаку.
4. AC = DF, ∡ A = ∡ D, AB = DE, то ΔABC=ΔDEF по первому признаку.
5. ∡ B = ∡ E, ∡ C = ∡ F, BC = EF, то ΔABC=ΔDEF по второму признаку.