Сечение, которое параллельно основанию четырёхугольной пирамиды, делит высоту пирамиды в отношении 10 : 15, считая от вершины. Вычисли отношение площади сечения к площади основания пирамиды.
Пусть х км/ч первоначальная скорость машины, у л - скорость вытекания воды, А л - воды вмещается в машину.Тогда А/у ч - время расхода воды, А*х/у км - длина дороги, которую можно полить.
Тогда при увеличении скорости движения в 2 раза, а скорости вытекания воды в 3 раза получим, А/(3у) ч - время расхода воды, (А*2х)/(3у) =4 км - длина дороги.
Если начальную скорость движения увеличить в 3 раза, а скорость вытекания воды увеличить в 2 раза, получим А/(2у) ч - время расхода воды, (А*3х)/(2у) км - длина дороги, которую можно полить.
Из выражения (А*2х)/(3у)=4 выразим А=(4*3у)/(2х)
подставим А в выражение (А*3х)/(2у)=(4*3у*3х)/(2х*2у)=(4*3*3)/(2*2)=9 км
Длину отрезков найдём по формуле: √(х1-х2)²+√(у1-у2)². Найдём сторону АВ:
АВ=√(-1-3)²+√(1-1)²=√(-4)²=√16=4
Найдём сторону СД, она должна быть равна АВ:
СД=√(3+1)²+√(-2+2)²=√4²=√16=4
Итак: стороны АВ=СД=4
Найдём другие две стороны ВС и АД:
ВС=√(3-3)²+√(1+2)²=√3²=3
АД=√(-1+1)²+√(1+2)²=√3²=3
Итак: ВС=АД=3.
Теперь найдём площадь прямоугольника зная его стороны по формуле: S=a×b, где а и b –стороны прямоугольника:
S=3×4=12
S=12
ЗАДАНИЕ 2
Найдём таким же образом длину диаметра MN:
MN=√(-2-2)²+√(2-2)²=√(-4)²=√16=4
Диаметр MN=4. Теперь найдём длину окружности, зная длину диаметра по формуле L= 2πr, где L - длина окружности, r- её радиус умноженный на 2, т. е. диаметр:
9км
Объяснение:
Пусть х км/ч первоначальная скорость машины, у л - скорость вытекания воды, А л - воды вмещается в машину.Тогда А/у ч - время расхода воды, А*х/у км - длина дороги, которую можно полить.
Тогда при увеличении скорости движения в 2 раза, а скорости вытекания воды в 3 раза получим, А/(3у) ч - время расхода воды, (А*2х)/(3у) =4 км - длина дороги.
Если начальную скорость движения увеличить в 3 раза, а скорость вытекания воды увеличить в 2 раза, получим А/(2у) ч - время расхода воды, (А*3х)/(2у) км - длина дороги, которую можно полить.
Из выражения (А*2х)/(3у)=4 выразим А=(4*3у)/(2х)
подставим А в выражение (А*3х)/(2у)=(4*3у*3х)/(2х*2у)=(4*3*3)/(2*2)=9 км
Объяснение: задание 1
Длину отрезков найдём по формуле: √(х1-х2)²+√(у1-у2)². Найдём сторону АВ:
АВ=√(-1-3)²+√(1-1)²=√(-4)²=√16=4
Найдём сторону СД, она должна быть равна АВ:
СД=√(3+1)²+√(-2+2)²=√4²=√16=4
Итак: стороны АВ=СД=4
Найдём другие две стороны ВС и АД:
ВС=√(3-3)²+√(1+2)²=√3²=3
АД=√(-1+1)²+√(1+2)²=√3²=3
Итак: ВС=АД=3.
Теперь найдём площадь прямоугольника зная его стороны по формуле: S=a×b, где а и b –стороны прямоугольника:
S=3×4=12
S=12
ЗАДАНИЕ 2
Найдём таким же образом длину диаметра MN:
MN=√(-2-2)²+√(2-2)²=√(-4)²=√16=4
Диаметр MN=4. Теперь найдём длину окружности, зная длину диаметра по формуле L= 2πr, где L - длина окружности, r- её радиус умноженный на 2, т. е. диаметр:
L=π×4=12,56;
ответ: L=12,56