Сечение наклонной треугольной призмы плоскостью, перпендикулярной боковому ребру,-равнобедренный прямоугольный треугольник, площадь которого 8см^2. Найти площадь боковой поверхности призмы, если её боковое ребро равно 5 см.
АВ=ВС, т.к. треугольник равнобедренный, а АС - основание. ВК=2, АК=8, тогда, АВ=10. Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов. АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16. В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6. Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
Пусть АВ - наибольшая сторона прямоугольника. АВ = 3 см (по условию).Рассмотрим треугольник AKC. Так как AKCD - ромб, то АК = КС, и этот треугольник равнобедренный, с углами при основании АС, равными, по условию, 30 градусам.
Треугольник АВС прямоугольный, с прямым углом В. Сторона ВС = АВ*tg30 = √3 см. Тогда АС = АВ/cos30 = 2√3 см. Сторона ромба АК = КС - боковая сторона равнобедренного треугольника с основанием, равным 2√3, и углами при основании, равными 30°. Высота этого треугольника - сторона, противолежащая углу в 30° - равна √3*tg30° = 1 см. Боковая сторона АК = КС = 1/sin30° = 2 см.
ВК=2, АК=8, тогда, АВ=10.
Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов.
АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16.
В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6.
Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
Треугольник АВС прямоугольный, с прямым углом В. Сторона ВС = АВ*tg30 = √3 см.
Тогда АС = АВ/cos30 = 2√3 см. Сторона ромба АК = КС - боковая сторона равнобедренного треугольника с основанием, равным 2√3, и углами при основании, равными 30°. Высота этого треугольника - сторона, противолежащая углу в 30° - равна √3*tg30° = 1 см. Боковая сторона АК = КС = 1/sin30° = 2 см.
ответ: 2 см.