Угол МАВ=45, угол МСВ=30. МВ=4. Поскольку угол МАВ=45, то в прямоугольном ΔАМВ угол АМВ=180-90-45=45. Тогда этот треугольник равнобедренный и АВ=МВ=4. МВ/ВС=tgМСВ. Отсюда АД=ВС=МВ/tg30=4√3. Диагональ ВД=√(АВ² +ВС²)=√(16+48)=8. МД²=МВ²+ВД²=16+64=80. АМ²=МВ²+ АВ²=16+16=32. В ΔМАД: АМ²+АД²=32+48=80, а это равно МД², что значит МД- гипотенуза прямоугольного ΔМАД. МС²=МВ²+ВС²=16+48=64. Тогда в ΔМСД: МС²+ДС²=64+16=80, а это тоже равно МД², и он также прямоугольный. б) Стороны равны АВ=ДС=4. АД=ВС=4√3. в) ВD-проекция МD,ВС-проекция МС, значит ΔВСD-проекция ΔМСD Площадь ΔВДС равна Sвдс=1/2*ВС*ДС=1/2*4√3*4=8√3
Чертёж смотрите во вложении.
Дано:ΔАВС - прямоугольный.
∠В = 90°.
ВО - биссектриса ∠В в прямоугольном ΔАВС.
ВН - высота.
∠А = 27°.
Найти:∠ОВН = ?
Решение:Рассмотрим ΔВАН - прямоугольный (так как ВН⊥АС).
Сумма острых углов прямоугольного треугольника равна 90°.
То есть -
∠ВАО+∠АВН = 90°
∠АВН = 90°-∠ВАО
∠АВН = 90°-27°
∠АВН = 63°.
Рассмотрим ∠В. Так как отрезок ВО - биссектриса, то ∠АВО = ∠ОВС = 90°/2 = 45° (по определению биссектрисы).
Рассмотрим ∠АВН.
∠АВН = ∠АВО+∠ОВН
∠ОВН = ∠АВН-∠АВО
∠ОВН = 63°-45°
∠ОВН = 18°.
ответ: 18°.Поскольку угол МАВ=45, то в прямоугольном ΔАМВ угол АМВ=180-90-45=45. Тогда этот треугольник равнобедренный и АВ=МВ=4.
МВ/ВС=tgМСВ. Отсюда АД=ВС=МВ/tg30=4√3.
Диагональ ВД=√(АВ² +ВС²)=√(16+48)=8.
МД²=МВ²+ВД²=16+64=80. АМ²=МВ²+ АВ²=16+16=32.
В ΔМАД: АМ²+АД²=32+48=80, а это равно МД², что значит МД- гипотенуза прямоугольного ΔМАД.
МС²=МВ²+ВС²=16+48=64.
Тогда в ΔМСД: МС²+ДС²=64+16=80, а это тоже равно МД², и он также прямоугольный.
б) Стороны равны АВ=ДС=4. АД=ВС=4√3.
в) ВD-проекция МD,ВС-проекция МС, значит ΔВСD-проекция ΔМСD
Площадь ΔВДС равна Sвдс=1/2*ВС*ДС=1/2*4√3*4=8√3