Середіня лінія трапеції дорівнює 48см.обчислітьпериметр трапеції ,якщо відомо що її можна розрізати на квардрат і рівнобедрений поямокутний трикутник,гіпотенуза якого дорівнює 44,8 см
Можно по т.Пифагора найти половину второй диагонали из одного из прямоугольных треугольников, на которые диагонали при пересечении делят ромб, и затем умножить на 2. Как правило, именно такой решения дается к подобной задаче. Есть другой решения этой задачи. Вспомним, что сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон. Т.е. d²+D²=2•(a²+b²) Ромб - параллелограмм с равными сторонами. Тогда d²+D²=4•a²⇒ 12²+D²=4•100 ⇒ D²=400-144=256 D=√256=16 см
В соответствии с классическим определением, угол между векторами,отложенными от одной точки, определяется как кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором. Для заданного варианта углы между векторами могут быть определены из соотношения углов в треугольнике ABC, в котором ∠АСВ=90°, ∠СВА=40°, соответственно ∠САВ=180°-(90°+40°)=50°. Тогда - - угол между векторами СА и СВ равен ∠АСВ=90°; - угол между векторами ВА и СА равен ∠САВ=50°; - угол между векторами СВ и ВА равен ∠САВ+∠АСВ=50°+90°=140°
Как правило, именно такой решения дается к подобной задаче.
Есть другой решения этой задачи.
Вспомним, что сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон.
Т.е. d²+D²=2•(a²+b²)
Ромб - параллелограмм с равными сторонами.
Тогда d²+D²=4•a²⇒
12²+D²=4•100 ⇒
D²=400-144=256
D=√256=16 см
- угол между векторами СА и СВ равен ∠АСВ=90°;
- угол между векторами ВА и СА равен ∠САВ=50°;
- угол между векторами СВ и ВА равен ∠САВ+∠АСВ=50°+90°=140°