Средняя линия треугольника - это отрезок, соединяющий середины двух сторон треугольника. Средняя линия треугольника параллельна его третьей стороне и равна ее половине.
5. 1) КН║АС, КН = АС/2 как средняя линия треугольника АВС, МР║АС, МР = АС/2 как средняя линия треугольника ADC, значит КН║МР и КН = МР, а если противоположные стороны четырехугольника параллельны и равны, то это параллелограмм. КНРМ - параллелограмм. 2) Аналогично доказываем, что КНРМ параллелограмм и добавим, что НР = KM = BD/2 (как средние линии соответствующих треугольников) КН = МР = АС/2. В прямоугольнике диагонали равны, значит стороны параллелограмма КНРМ равны, и следовательно это ромб. 3) Все то же и КН║МР║АС, КМ║НР║BD. Диагонали ромба перпендикулярны, значит и смежные стороны параллелограмма КНРМ перпендикулярны, и следовательно, это прямоугольник. 4) Так как квадрат - это прямоугольник с равными сторонами, то из задач 2) и 3) следует, что КНРМ - ромб с перпендикулярными смежными сторонами, то есть квадрат.
6. По свойству средней линии треугольника: КН = АС/2 = 15/2 = 7,5 см НР = АВ/2 = 10/2 = 5 см КР = ВС/2 = 12/2 = 6 см
Несмотря на то, что прямоугольный треугольник, сторонами которого являются высота, медиана и отрезок гипотенузы между ними, является Пифагоровым (8, 15,17), и высота делит гипотенузу, длина которой равна 17*2 = 34, на отрезки длиной 17 - 8 = 9 и 17 + 8 = 25 (как и положено, 9*25 = 15^2), сам треугольник не является целочисленным, и его катеты надо просто вычислить по теореме Пифагора.
Средняя линия треугольника параллельна его третьей стороне и равна ее половине.
5.
1) КН║АС, КН = АС/2 как средняя линия треугольника АВС,
МР║АС, МР = АС/2 как средняя линия треугольника ADC, значит
КН║МР и КН = МР, а если противоположные стороны четырехугольника параллельны и равны, то это параллелограмм.
КНРМ - параллелограмм.
2) Аналогично доказываем, что КНРМ параллелограмм и добавим, что
НР = KM = BD/2 (как средние линии соответствующих треугольников)
КН = МР = АС/2.
В прямоугольнике диагонали равны, значит стороны параллелограмма КНРМ равны, и следовательно это ромб.
3) Все то же и
КН║МР║АС, КМ║НР║BD.
Диагонали ромба перпендикулярны, значит и смежные стороны параллелограмма КНРМ перпендикулярны, и следовательно, это прямоугольник.
4) Так как квадрат - это прямоугольник с равными сторонами, то из задач 2) и 3) следует, что КНРМ - ромб с перпендикулярными смежными сторонами, то есть квадрат.
6. По свойству средней линии треугольника:
КН = АС/2 = 15/2 = 7,5 см
НР = АВ/2 = 10/2 = 5 см
КР = ВС/2 = 12/2 = 6 см
Несмотря на то, что прямоугольный треугольник, сторонами которого являются высота, медиана и отрезок гипотенузы между ними, является Пифагоровым (8, 15,17), и высота делит гипотенузу, длина которой равна 17*2 = 34, на отрезки длиной 17 - 8 = 9 и 17 + 8 = 25 (как и положено, 9*25 = 15^2), сам треугольник не является целочисленным, и его катеты надо просто вычислить по теореме Пифагора.
Меньший катет равен √(9^2 + 15^2) = 3*√34;
Больший катет равен √(25^2 + 15^2) = 5*√34;
Ну да, еще периметр 34 + 8*√34 ;