Вам очень повезло, вопрос взят с комментариев к профилю Zsedina Итак, дам самое краткое решение: 1) диагональ прямоугольника делит его пополам 2) из треугольника с острым углом, и равными сторонами находим: а) высоту параллелограмма противолежащий катет в прямоугольном треугольнике углу 30 градусов равен половине гипотенузы, что в нашем случае 4√3 б) угол при вершине равен 180-2*30=120 по т.косинусов основание=√(2*(8√3)²-2*(8√3)²*сos120)=8√3*√2-2*(-1/2)=8*3=24 3) площадь параллелограмма равна 4√3*24=96√3 кв ед
Медианы треугольника пересекаются в одной точке и делятся этой точкой в отношении 2:1, считая от вершины.
Биссектрисы треугольника пересекаются в одной точке, расстояние от которой до сторон треугольника одинаково и является центром вписанной окружности.
Высоты треугольника пересекаются в одной точке. Точка пересечения высот остроугольного треугольника находится внутри него. Точка пересечения высот прямоугольного треугольника - вершина прямого угла.
Высоты тупоугольного треугольника, проведенные из вершин его острых углов, проходят вне его и пересекают продолжения сторон. Точка пересечения высот тупоугольного треугольника находится вне треугольника.
Итак, дам самое краткое решение:
1) диагональ прямоугольника делит его пополам
2) из треугольника с острым углом, и равными сторонами находим:
а) высоту параллелограмма
противолежащий катет в прямоугольном треугольнике углу 30 градусов равен половине гипотенузы, что в нашем случае 4√3
б) угол при вершине равен 180-2*30=120
по т.косинусов
основание=√(2*(8√3)²-2*(8√3)²*сos120)=8√3*√2-2*(-1/2)=8*3=24
3) площадь параллелограмма равна
4√3*24=96√3 кв ед
Медианы треугольника пересекаются в одной точке и делятся этой точкой в отношении 2:1, считая от вершины.
Биссектрисы треугольника пересекаются в одной точке, расстояние от которой до сторон треугольника одинаково и является центром вписанной окружности.
Высоты треугольника пересекаются в одной точке. Точка пересечения высот остроугольного треугольника находится внутри него. Точка пересечения высот прямоугольного треугольника - вершина прямого угла.
Высоты тупоугольного треугольника, проведенные из вершин его острых углов, проходят вне его и пересекают продолжения сторон. Точка пересечения высот тупоугольного треугольника находится вне треугольника.