1. відповідь: а) р=36cм; б) s=24sqrt(3)см^2. а) знайдемо третю сторону за теоремою косинусів: с^2=a^2+b^2-2ab*cos(c)=16^2+6^2-2*16*6*cos(60градусів) =196 c=sqrt(196)=14. тому p=a+b+c=16+6+14=36. б) знайдемо площу за формулою: s=(ab*sin(c))/2=(16*6*sin(60градусів)) /2=24sqrt(3). 2. відповідь: сторона=4см, площа=16см^2. площа круга дорівнює pi*r^2. тому r=sqrt(8). сторона квадрата, вписаного в коло, дорівнює sqrt(2)*r= sqrt(2)*sqrt(8)=4. відповідно площа квадрата дорівнює 4^2=16. 3. відповідь: 384см^2. довжина першого катета дорівнює 12+20=32. бісектриса ділить сторону трикутника на відрізки, що відносяться як 2 інші сторони. тому (другий катет): (гіпотенуза) =12: 20=3: 5. нехай другий катет дорівнює 3х і гіпотенуза дорівнює 5х. тоді, за теоремою піфагора, (3х) ^2+32^2=(5х) ^2 16x^2=1024 x=8. тому другий катет дорівнює 3*8=24. площа прямокутного трикутника дорівнює половині добутку його катетів: s=32*24/2=384.
Пусть основание прямоугольного параллелепипеда прямоугольник ABCD . AB=CB =x ; BC=AD =7x ;AB₁ =BA₁ =CD₁=DC₁=13 см ;AD₁ =DA₁ =BC₁=CB₁ =37 см. обозн._ высота параллелепипеда AA₁ =BB₁ =CC₁ =DD₁ =h.
Sбок - ?
S бок =2(AB+BC)*AA₁ = 2(x+7x)*h =16xh. По теореме Пифагора для треугольников ABB₁ и ADD₁: { AB²+BB₁² =AB₁² ; AD² +DD₁²=AD₁². { x²+h² =13² ; (7x)² +h²=37². Вычитаем из второго уравнения системы первое (7x)² -x² =37² -13²; 48x² =(37-13)(37+13) ; 2*24x² =24*2*25⇒x =5 ; h =√(13² -5²) =12. S бок =16xh =16*5*12 =16*60 =960 (см²).
AB=CB =x ; BC=AD =7x ;AB₁ =BA₁ =CD₁=DC₁=13 см ;AD₁ =DA₁ =BC₁=CB₁ =37 см.
обозн._ высота параллелепипеда AA₁ =BB₁ =CC₁ =DD₁ =h.
Sбок - ?
S бок =2(AB+BC)*AA₁ = 2(x+7x)*h =16xh.
По теореме Пифагора для треугольников ABB₁ и ADD₁:
{ AB²+BB₁² =AB₁² ; AD² +DD₁²=AD₁².
{ x²+h² =13² ; (7x)² +h²=37².
Вычитаем из второго уравнения системы первое
(7x)² -x² =37² -13²;
48x² =(37-13)(37+13) ;
2*24x² =24*2*25⇒x =5 ;
h =√(13² -5²) =12.
S бок =16xh =16*5*12 =16*60 =960 (см²).
ответ: 960 см².