Только потому, что мне очень нравятся такие вот штуки. Можно сформулировать эту задачу так - к одной из сторон квадрата "пристроен" прямоугольный треугольник, так что сторона квадрата является его гипотенузой. И далее - по тексту. Можно взять три "точно таких же" треугольника, и пристроить к другим сторонам квадрата аналогичным образом, так, что получится больший квадрат, в который вписан меньший квадрат, так, что все вершины его лежат на сторонах большего квадрата. Центры этих квадратов совпадают, потому что, если ПОВЕРНУТЬ всю эту "конструкцию" на 90° вокруг центра меньшего квадрата O, то фигура "перейдет в себя". Поэтому AO - диагональ большого квадрата, то есть - биссектриса угла BAC. Ну, теперь, если напрячься, и разделить 90° пополам, то получится 45°.
а) О-центр окружности
АОВ- прямоугольный равнобедренный треуг.
угол О=90 центральный
углы А=В=45
ОА=ОВ=4 катеты
АВ-гипотенуза=4√2
расстояние от центра окр-ти до этой хорды ОВ*sin45=4*√2/2=2√2
б) угол С=45 лежит по другую сторону от центра О от хорды АВ-он вписаный угол , опирается на ту же хорду , что и центральный угол АОВ
--равен половине АОВ/2=90/2=45
теперь дуги дуга АС : дуга СВ = 5 : 4
--на хорде АВ--маленькая дуга АВ и большая АВ(проходит через т.С)
маленькую отсекает угол АСВ=45 град, а большую 315 (360-45)
большую дугуразобьем на 9 частей (5+4) ,
тогда АС =315 * 5/9 = 175 (уголАВС) и СВ =315 * 4/9 = 140(уголВАС)
в) по теореме синусов АВ/sin(ACB)=BC/sin(BAC) ; 4√2/sin45=BC/sin140
BC=4√2/sin45 *sin140=4*sin140
Можно сформулировать эту задачу так - к одной из сторон квадрата "пристроен" прямоугольный треугольник, так что сторона квадрата является его гипотенузой. И далее - по тексту.
Можно взять три "точно таких же" треугольника, и пристроить к другим сторонам квадрата аналогичным образом, так, что получится больший квадрат, в который вписан меньший квадрат, так, что все вершины его лежат на сторонах большего квадрата.
Центры этих квадратов совпадают, потому что, если ПОВЕРНУТЬ всю эту "конструкцию" на 90° вокруг центра меньшего квадрата O, то фигура "перейдет в себя".
Поэтому AO - диагональ большого квадрата, то есть - биссектриса угла BAC.
Ну, теперь, если напрячься, и разделить 90° пополам, то получится 45°.