Серединный перпендикуляр к стороне AC треугольника ABC пересекает биссектрису угла ВAC в точке K, лежащей на стороне BC. а)Докажите, что AB^2=BK*BC б) при дополнительном условии AB=30 и sinC=4/5 найдите длину биссектрисы АK
1) Сумма вертикальных углов равна трети прямого угла. Найдите эти углы.Пусть один угол равен х, так как вертикальные углы равны, то и другой угол х, Их сумма 2х = 2/3·(90°) ⇒х=30° (разделим уравнение на 2, справа 90/3=30) ответ 30° 2) Два данных угла относятся как 1:3, а смежные с ними — как 4:3. Найдите данные углы. Обозначи. один данный угол х, второй 3х, тогда смежные к ним (180-x) и (180-3x) cоответственно (180-х) : (180-3х) = 4:3 - пропорция. Произведение крайних членов пропорции равно произведению средних, поэтому 3(180-х)=4(180-3х) 540-3х=720-12х 12х-3х=720-540 9х=180 х=20 ответ. Один угол 20°, второй 60° 20°:60°=1:3 Смежный углу в 20° равен 160° Смежный углу 60° равен 120° 160°:120°=4:3
Первый признак равенства треугольников: Если 2 стороны и угол между ними одного треугольника равны соответственно 2 сторонам и углу между ними другого треугольника, то такие треугольники равны.
Следующее задание некорректное.
2. Дано:
Просто перепишите условие
Доказать: треугольники (далее - т.) ABC=PQR
Доказательство:
Т. ABC=PQR по 1 признаку равенства треугольников, так как AC=PQ, углы (далее - у.) C=Q, у. B=R, что и требовалось доказать.
Далее прикреплён чертёж к задаче. К сожалению, отметить равные элементы у меня нет возможности, поэтому отметьте сами(
ответ 30°
2) Два данных угла относятся как 1:3, а смежные с ними — как 4:3. Найдите
данные углы.
Обозначи. один данный угол х, второй 3х, тогда смежные к ним (180-x) и (180-3x) cоответственно
(180-х) : (180-3х) = 4:3 - пропорция.
Произведение крайних членов пропорции равно произведению средних, поэтому
3(180-х)=4(180-3х)
540-3х=720-12х
12х-3х=720-540
9х=180
х=20
ответ. Один угол 20°, второй 60°
20°:60°=1:3
Смежный углу в 20° равен 160°
Смежный углу 60° равен 120°
160°:120°=4:3
см. объяснение
Объяснение:
Первый признак равенства треугольников: Если 2 стороны и угол между ними одного треугольника равны соответственно 2 сторонам и углу между ними другого треугольника, то такие треугольники равны.
Следующее задание некорректное.
2. Дано:
Просто перепишите условие
Доказать: треугольники (далее - т.) ABC=PQR
Доказательство:
Т. ABC=PQR по 1 признаку равенства треугольников, так как AC=PQ, углы (далее - у.) C=Q, у. B=R, что и требовалось доказать.
Далее прикреплён чертёж к задаче. К сожалению, отметить равные элементы у меня нет возможности, поэтому отметьте сами(
P.S. вывод: учите геометрию