2) Маючи сторону і одну діагональ знайдемо іншу діагональ і потім знайдемо площу ромба. Діагоналі пересікаються під прямим кутом, тому легко знайдемо половинку діагоналі , а потім і цілу діагональ.Назвемо її ВД і вона =16 см , S ромба через діагоналі буде:АС*ВД/2=12*16/2=96 см²
3)S=а+в/2*h 2S=(a+b)*h a+b=2S/h=2*40/4=20 cm
4)Маємо прямокутню трапецію, маємо периметр, маємо площу, а також маємо меншу бічну сторону, яка також буде висотою прямокутньої трапеції, нам треба знайти іншу бічну сторону трапеції.
Знайдемо суму основ трапеції (а+в) S=а+в/2*h а+в=2S/h=2*27/3=18 см.
Тепер знайдемо невідому бічну сторону трапеції: Р-периметр=26 см
26-(3+18)=5 см. Друга бічна сторона трапеції =5 см
Объяснение:
1) S=a+b/2*h=8+6/2*5=35(cm²)
2) Маючи сторону і одну діагональ знайдемо іншу діагональ і потім знайдемо площу ромба. Діагоналі пересікаються під прямим кутом, тому легко знайдемо половинку діагоналі , а потім і цілу діагональ.Назвемо її ВД і вона =16 см , S ромба через діагоналі буде:АС*ВД/2=12*16/2=96 см²
3)S=а+в/2*h 2S=(a+b)*h a+b=2S/h=2*40/4=20 cm
4)Маємо прямокутню трапецію, маємо периметр, маємо площу, а також маємо меншу бічну сторону, яка також буде висотою прямокутньої трапеції, нам треба знайти іншу бічну сторону трапеції.
Знайдемо суму основ трапеції (а+в) S=а+в/2*h а+в=2S/h=2*27/3=18 см.
Тепер знайдемо невідому бічну сторону трапеції: Р-периметр=26 см
26-(3+18)=5 см. Друга бічна сторона трапеції =5 см
ответ: 4) 288.
Решение.
Пусть ABC - треугольник, и угол B - ппрямой.
Пусть BК - высота, проведенная из вершины прямого угла B,
BМ - бисектриса, проведенная из угла B, при этом на стороне АС.
BК = 6, ВМ = 8.
точки находятся в таком порядке: A, К, М, C.
Начертите такой треугольник, чтобы было понятнее.
Угол АВМ = угол МВС = 45 гр = pi/4.
Обозначим угол КВМ = alfa.
cos(alfa) = ВК/ВМ = 6/8 = 3/4.
sin(alfa) = V(1 - 9/16) = V((16 - 9)/16) = V(7)/4 (V - корень квдратный) .
В треугольнике АВК угол АВК = угол АВМ - alfa = pi/4 - alfa.
АВ = ВК/cos(pi/4 - alfa) = 6/cos(pi/4 - alfa).
В треугольнике КВС угол КВС = угол МВС + alfa = pi/4 + alfa.
ВС = ВК/cos(pi/4 + alfa) = 6/cos(pi/4 + alfa).
Площадь треугольника АВС:
S = (1/2)*АВ*ВС = (1/2)*6*6/( cos(pi/4 - alfa)*cos(pi/4 + alfa) ) = 18/( cos(pi/4 - alfa)*cos(pi/4 + alfa) ).
cos(pi/4 - alfa) = cos(pi/4)*cos(alfa) + sin(pi/4)*sin(alfa) = (V(2)/2)*(3/4) + (V(2)/2)*(V(7)/4) = (V(2)/2)*(3 + V(7)/4
cos(pi/4 + alfa) = cos(pi/4)*cos(alfa) - sin(pi/4)*sin(alfa) = (V(2)/2)*(3/4) - (V(2)/2)*(V(7)/4) = (V(2)/2)*(3 - V(7)/4
Поэтоиу
S = 18*4*4/( (V(2)/2)*(3 + V(7)* (V(2)/2)*(3 - V(7) ) = 18*16*2/(3^2 - V(7)^2) = 18*16*2/(9 - 7) = 18*16 = 288.
Объяснение: