Высота боковой грани МАВ - прямая МА, которая из тр-ка МАД равна: МА=√(МД²+АД²)=√(15²+10²)=√325=5√13 дм. Высота боковой грани МВС - прямая МС, которая из тр-ка МСД равна: МС=√(МД²+СД)=√(15²+20²=25 дм. Площадь ΔМАВ: S1=AB·MA/2=20·5√13/2=50√13 дм². Площадь ΔМВС: S2=ВС·МС/2=10·25/2=125 дм². Площадь двух граней, прилежащих к высоте МД: S3=(АД+СД)·МД/2=(10+20)·15/2=225 дм². Площадь основания: S4=АВ·АД=20·10=200 дм². Общая площадь - это сумма всех найденных площадей: S=50√13+125+225+200=50(1+11√13) дм³ - это ответ.
Пусть АО=ОС=r; Δ CОВ ~ Δ АМВ по двум углам ( ∠В-общий; ∠АМВ=∠ОСВ). СО:АМ=СВ:МВ; r: AM=4:6,4⇒ AM=1,6r
Рассмотрим прямоугольную трапецию МСОА. Проведем высоту СЕ. (см чертеж 2, отдельный) Из прямоугольного треугольника ОЕА по теореме Пифагора ОА²=ОЕ²+ЕА²; r²=2,4²+0,36r²; 0,64r²=5,76 r²=9 r=3.
АМ=1,6r=1,6·3=4,8
Из прямоугольного треугольника АМС по теореме Пифагора АС²=АМ²+МС²; АС²=4,8²+2,4²=(2,4·2)²+2,4²=2,4²·(2²+1)=2,4²·5 АС=2,4√5 Δ AMC ~ Δ CMD AC : BC=MC : CD; 2,4√5 : 4=4,8 : СD ⇒ CD=8√5/5=1,6√5
AD=AC+CD=2,4√5+1,6√5=4√5.
По свойству касательной и секущей, проведенных к окружности малого радиуса из точки В: произведение секущей ВА на ее внешнюю часть ВК равно квадрату касательной ВС ВА· (ВА-AK)=BC²; AK=2r=2·3=6 ВА· (ВА-6)=4²; ВА²-6ВА-16=0- квадратное уравнение. D=36+64=100 BA=(6+10)/2=8 BA=2R 2R=8 R=4
МА=√(МД²+АД²)=√(15²+10²)=√325=5√13 дм.
Высота боковой грани МВС - прямая МС, которая из тр-ка МСД равна:
МС=√(МД²+СД)=√(15²+20²=25 дм.
Площадь ΔМАВ: S1=AB·MA/2=20·5√13/2=50√13 дм².
Площадь ΔМВС: S2=ВС·МС/2=10·25/2=125 дм².
Площадь двух граней, прилежащих к высоте МД:
S3=(АД+СД)·МД/2=(10+20)·15/2=225 дм².
Площадь основания: S4=АВ·АД=20·10=200 дм².
Общая площадь - это сумма всех найденных площадей:
S=50√13+125+225+200=50(1+11√13) дм³ - это ответ.
Δ CОВ ~ Δ АМВ по двум углам ( ∠В-общий; ∠АМВ=∠ОСВ).
СО:АМ=СВ:МВ;
r: AM=4:6,4⇒ AM=1,6r
Рассмотрим прямоугольную трапецию МСОА. Проведем высоту СЕ.
(см чертеж 2, отдельный)
Из прямоугольного треугольника ОЕА по теореме Пифагора
ОА²=ОЕ²+ЕА²;
r²=2,4²+0,36r²;
0,64r²=5,76
r²=9
r=3.
АМ=1,6r=1,6·3=4,8
Из прямоугольного треугольника АМС по теореме Пифагора
АС²=АМ²+МС²;
АС²=4,8²+2,4²=(2,4·2)²+2,4²=2,4²·(2²+1)=2,4²·5
АС=2,4√5
Δ AMC ~ Δ CMD
AC : BC=MC : CD;
2,4√5 : 4=4,8 : СD ⇒ CD=8√5/5=1,6√5
AD=AC+CD=2,4√5+1,6√5=4√5.
По свойству касательной и секущей, проведенных к окружности малого радиуса из точки В:
произведение секущей ВА на ее внешнюю часть ВК равно квадрату касательной ВС
ВА· (ВА-AK)=BC²; AK=2r=2·3=6
ВА· (ВА-6)=4²;
ВА²-6ВА-16=0- квадратное уравнение.
D=36+64=100
BA=(6+10)/2=8
BA=2R
2R=8
R=4
О т в е т. R=4; r=3; AD=4√5