середня лінія прямокутної трапеції =12см, а висота, яка проведена з вершини тупого кута ділить її основну на відрізки довжини яких в вносяться як 3:2, рахуючи від вершини тупого кута знайти вершини тупого кута
Правильный четырёхугольник - это квадрат. Так как он вписан в окружность, то диаметр окружности будет равен диагонали квадрата. Диагонали квадрата пересекаются в центре и делят его на 4 одинаковых прямоугольных равнобедренных треугольника с бок. сторонами = R ⇒ S квадрата равна площади четырех треугольников:
ответ: 1
A3.
Правильный шестиугольник состоит из 6 равносторонних треугольников, стороны которых равны a, а высоты равны радиусу R. Найдем, чему равны стороны через высоту (радиус):
Площадь одного треугольника будет равна:
Площадь шестиугольника:
ответ: 2
B1.
Пусть вписанный треугольник - ΔABC, сторона = ; описанный - ΔA₁B₁C₁, сторона -
Пара наклонных имеет один общий перпендикуляр, или один общий катет (CD).
Формула вычисления катета CD (по теореме Пифагора), зная гипотенузу AC, и катет AD:
Формула вычисления катета CD, зная гипотенузу BC, и катет DB:
Объявим катет CD — как переменную "y", составим систему:
Как мы видим — x равен 5-и, тоесть каждая проекция будет больше гипотенузы, так не пойдёт.
Но если в уравнении есть цифры в квадратах (например — x²), то определение переменных имеет 2 вида: цифра или отрицательная, или положительная, чтобы найти правильный вариант — надо решить уравнение ещё раз, но только уже с известными двумя типами.
Как видим, x — не может быть равен 5-и, что и означает, что он равен -5-и.
Убедимся в этом:
Ни в коем случае не считаем 16x & 9x — как абсолютные длины проекций, ведь если AD = 9x, то: AD = -5*9 = -45.
А если с цифрой -45, и перпендикуляром 25 — попробовать найти гипотенузу(), то ничего не получится.
//Это точно правильный ответ — посчитав сама, и даже проверив онлайн калькуляторами.
A1.
Sшестиугольника =
ответ: 4
A2.
Правильный четырёхугольник - это квадрат. Так как он вписан в окружность, то диаметр окружности будет равен диагонали квадрата. Диагонали квадрата пересекаются в центре и делят его на 4 одинаковых прямоугольных равнобедренных треугольника с бок. сторонами = R ⇒ S квадрата равна площади четырех треугольников:
ответ: 1
A3.
Правильный шестиугольник состоит из 6 равносторонних треугольников, стороны которых равны a, а высоты равны радиусу R. Найдем, чему равны стороны через высоту (радиус):
Площадь одного треугольника будет равна:
Площадь шестиугольника:
ответ: 2
B1.
Пусть вписанный треугольник - ΔABC, сторона = ; описанный - ΔA₁B₁C₁, сторона -
Для ΔA₁B₁C₁ радиус высоты
⇒
⇒
Для ΔABC радиус R = высоты :
⇒
⇒
Найдем соотношение периметров и площадей:
25.
Отношения проекций такова: 9:16.
Тоесть их переменные таковы: AD = 9x; DB = 16x.
Пара наклонных имеет один общий перпендикуляр, или один общий катет (CD).
Формула вычисления катета CD (по теореме Пифагора), зная гипотенузу AC, и катет AD:
Формула вычисления катета CD, зная гипотенузу BC, и катет DB:
Объявим катет CD — как переменную "y", составим систему:
Как мы видим — x равен 5-и, тоесть каждая проекция будет больше гипотенузы, так не пойдёт.
Но если в уравнении есть цифры в квадратах (например — x²), то определение переменных имеет 2 вида: цифра или отрицательная, или положительная, чтобы найти правильный вариант — надо решить уравнение ещё раз, но только уже с известными двумя типами.
Как видим, x — не может быть равен 5-и, что и означает, что он равен -5-и.
Убедимся в этом:
Ни в коем случае не считаем 16x & 9x — как абсолютные длины проекций, ведь если AD = 9x, то: AD = -5*9 = -45.
А если с цифрой -45, и перпендикуляром 25 — попробовать найти гипотенузу(), то ничего не получится.
//Это точно правильный ответ — посчитав сама, и даже проверив онлайн калькуляторами.
Вывод: x = -5; CD = 25.
29.
Углы, образующийся наклонными, и прямой: <ADB = 30°; <ACB = 60°.
Теорема о 30-градусном угле прямоугольного треугольника такова: катет, противолежащий углу 30-градусов в прямоугольном треугольнике — равен половине гипотенузы.
Против угла ADB — лежит расстояние между точкой A — до прямой, тоесть перпендикуляр, та же высота, тот же катет AB.
Тоесть: AB = AD/2 ⇒ AD = AB*2 = 32.
<ACB = 60° => <CAB = 90-60 = 30°.
Та жа теорема: <CAB = 30° => CB = CA/2.
По теореме Пифагора:
Так как катет AB — равен половине гипотенузы, то объявим обе неизвесные числа, как переменная "x":
Вывод: AD = 32; AC = 18.5.