АВ=ВС, т.к. треугольник равнобедренный, а АС - основание. ВК=2, АК=8, тогда, АВ=10. Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов. АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16. В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6. Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
1 стор.-х 2 стор- 5х периметр (х+5х)*2=180 6х*2=180 6х=180:2 6х=90 х=90:6 х=15 см это 1 сторона 15*5=75 см это 2 сторона
раз разность двух сторон равна 15 см,значит 1 сторона на 15 см больше,чем 2 сторона 2 стор.-х 1 стор.-х+15 периметр ( х+х+15)*2=150 2х+15=150:2 2х+15=75 2х=75-15 2х=60 х=60:2 х=30 см это 2 сторона 30+15=45 см это 1 сторона
ВК=2, АК=8, тогда, АВ=10.
Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов.
АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16.
В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6.
Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
2 стор- 5х
периметр (х+5х)*2=180
6х*2=180
6х=180:2
6х=90
х=90:6
х=15 см это 1 сторона 15*5=75 см это 2 сторона
раз разность двух сторон равна 15 см,значит 1 сторона на 15 см больше,чем 2 сторона
2 стор.-х
1 стор.-х+15
периметр ( х+х+15)*2=150
2х+15=150:2
2х+15=75
2х=75-15
2х=60
х=60:2
х=30 см это 2 сторона 30+15=45 см это 1 сторона