В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
HeLLDeViLL
HeLLDeViLL
01.03.2021 06:51 •  Геометрия

,сейчас 10 класс геометрия


,сейчас 10 класс геометрия

Показать ответ
Ответ:
makhero111
makhero111
04.01.2023 14:30

Насколько я понимаю, речь идет просто об угле между касательной и хордой с концом в точке касания (или - то же самое - секущей, проходящей через точку касания). 

Почему в ГИА применяется термин "вневписанный угол", я не знаю, по моему, это бред. Есть вневписанные окружности. Там это слово к месту, а тут - явно нет. Но, всё таки...

 

Если есть окружность с центром в точке О, касательная к ней в точке А (путь АС, где С - какая-то точка на касательной, желательно "с той стороны", что и хорда) и хорда АВ, то ОА - радиус в точку касания - перпендикулярен АС. Если продлить его за точку О до пересечения с окружностью в точке Е, то АЕ - диаметр. Если соединить теперь Точку Е с точкой В, то угол АЕВ - прямой, поскольку это вписанный угол, опирающийся на диаметр АЕ. То есть ЕВ перпендикулряно ВА. 

Получилось, что углы САВ и АЕВ имеют взаимно перпендикулярные стороны, то есть они равны. При этом угол АЕВ - вписанный угол, опирающийся на дугу АВ, отсекаемую (стягиваемою) хордой АВ. Если градусная мера дуги АВ = х, то угол АЕВ = х/2 = угол САВ, что и требовалось доказать.

0,0(0 оценок)
Ответ:
green151
green151
15.10.2020 12:02

В условии не хватает слов "параллельно АС". В противном случае задача не имеет решения (точнее одного решения, сами по себе решения есть, но - не интересные :) одно из них - треугольник MBD).

Пусть b=8; a = 4; О - центр основания, МО - высота пирамиды, сечение пересекает MD в точке Q (MQ = QD), МС в точке Р, MA - в точке G, МО в точке К. Надо найти площадь четырехугольника BGQP. 

Плоскость сечения II АС, поэтому GP II AC, откуда MG/GA = МК/КО = MP/PC = 2/1; поскольку BQ и MO - медианы, и К - точка пересечения медиан треугольника MBD.

то есть 

GP = (2/3)*AC = a*2√2/3; (из подобия треугольников AMC и GMP)

И еще, поскольку у квадрата диагонали перпендикулярны, AC перпендикулярно плоскости треугольника MDB, откуда следует, что GP перпендикулярно BQ, то есть площадь S четырехугольника BGQP равна S = BQ*GP/2;

Остается найти медиану m = BQ равнобедренно треугольника MDB с боковыми сторонами MD = MB = b = 8; и основанием BD = a√2; (a = 4);

(2*m)^2 = 2(a√2)^2 + b^2;

m = (1/2)*√(4*a^2 + b^2);

S = (1/2)*(a*2√2/3)*(1/2)*√(4*a^2 + b^2) = (1/6)*a*√(8*a^2 + 2*b^2);

ну и надо подставить числа.

если b = 2*a, то S = (2/3)*a^2 = 32/3;


27.04.2015

Мне предложили тут что-то изменить. Якобы ответ должен быть в 2 раза меньше. Я очень буду рад, если мне предложат грамотный анализ решения. Но я могу показать на пальцах, что ответ верный. Это как раз очень просто. В сечении получается дельтоид, у которого одна из диагоналей BQ = BD; а вторая - GP = (2/3)*AC; отсюда мгновенно понятно, что площадь сечения составляет 2/3 площади основания. 

(площадь сечения) = BQ*GP/2 = (2/3)*BD*AC/2 = (2/3)*(площади основания) = (2/3)*4^2 = = 2*16/3 = 32/3; 

любые попытки найти тут ошибку могут вызвать только улыбку :

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота