в треугольнике abc, ac = cb = 8, угол acb = 120 градусов. точка m удалена от плоскости треугольника на расстоянии 12 см и находится на равном расстоянии от вершин треугольника abc.
найти угол между ma и плоскостью треугольника abc
точка m находится на равном расстоянии от вершин треугольника abc, следовательно, наклонные ма, мс и мв равны, их проекции также равны, а м проецируется в центр в описанное вокруг δ авс окружности.
оа = ов = ос = r
углы при а и в равны, как углы при основании равнобедренного треугольника.
Дано: ABCD - ромб
AB = 10
<A = 120
Найти: AC, BD = ?
Точка O - пересечение диагоналей AC и BD
Треугольник ABD - р/б (AB=AD т.к ABCD ромб) => AO - биссектриса, высота и медиана.
<BAO = 60 т.к AO - биссектриса
Треугольник ABO - прямоугольный, <ABO = 90-60 = 30
Напротив угла в 30 градусов в прямоугольном треугольнике лежит катет, равный половине гипотенузы AB => AO = 5
т.к ABCD - ромб, его диагонали делятся точкой пересечения пополам => AO=OC = 5 => AC = 2AO = 10
Треугольник ABC - равносторонний (AB=BC=AC) => <B = 60 => <OBC = 30
В треугольнике BOC - прямоугольном BC - гипотенуза = 10, катет OC = 5, найдем сторону BO по теореме Пифагора:
BO² = BC²-OC²
BO² = 10²-5²
BO² = (10-5)(10+5)
BO² = 5*15 = 75
BO = √75
BD = 2√75
BD = 2*√5*5*3
BD = 10√3
ответ: AC = 10 см; BD = 10√3 см
Объяснение:
в треугольнике abc, ac = cb = 8, угол acb = 120 градусов. точка m удалена от плоскости треугольника на расстоянии 12 см и находится на равном расстоянии от вершин треугольника abc.
найти угол между ma и плоскостью треугольника abc
точка m находится на равном расстоянии от вершин треугольника abc, следовательно, наклонные ма, мс и мв равны, их проекции также равны, а м проецируется в центр в описанное вокруг δ авс окружности.
оа = ов = ос = r
углы при а и в равны, как углы при основании равнобедренного треугольника.
∠а = ∠в = (180º-120º): 2 = 30º
по т.синусов
r = (ac: sin 30º): 2 = (8: 0,5): 2 = 8 см
δ мoa - прямоугольный, мо = 12, ов = 8, и tg ∠mao = 12/8 = 1,5
∠mao = ≈56º20 "