Боковое ребро - А стороны основания В и С h - высота основания, которым является параллелограмм S=2(SАС+SBC+SСh) У нас есть все данные, кроме высоты основания. Начертите параллелограмм АВСD, в котором <BAC=30 градусов, из В на АD проведем высоту h. SСh=12 х h h - катет получившегося прямоугольного Δ, который лежит напротив <30 градусов. Свойство прямоугольного Δ - катет, лежащий против <30 градусов равен половине гипотенузы. Гипотенуза у нас вторая сторона основания, которая равна 8. Значит, h=4. Теперь можно узнать площадь основания или SCh=12 х 4=48 Тогда полная поверхность параллелепипеда равна S=2(SАС+SBC+SСh) =2(8 · 6 + 12 · 6 + 12 · 4)= 2 · 168=336 Если в условии см, 336 см² - площадь поверхности ПРЯМОГО параллелепипеда
Известно, что площадь сферы находится по формуле: S = 4*Pi*R*R (четыре пи эр квадрат)
Нам неизвестно, какой радиус у сферы, но известно, что сфера описана около куба, то есть половина внутренней диагонали куба и будет радиусом нашей сферы.
Чтобы найти внутреннюю диагональ куба, воспользуемся формулами для прямоугольного треугольника. Сначала найдём диагональ грани куба: d = 2^0.5 * a = 2^0.5 (корень квадратный из 2) метров
Теперь найдём внутреннюю диагональ: D = (a^2 + b^2)^0.5 = (1 + 2)^0.5 = 3^0.5 (корень квадратный из 3) метров.
Разделив внутреннюю диагональ куба, которая является диаметром сферы, пополам, получим радиус сферы: R = 3^0.5 / 2 метра
Подставим это значение в первую формулу: S = 4 * Pi * (3^0.5 / 2)^2 = 4 * Pi * 3 / 4 = 3Pi = 9.42 квадратных метра
стороны основания В и С
h - высота основания, которым является параллелограмм
S=2(SАС+SBC+SСh)
У нас есть все данные, кроме высоты основания.
Начертите параллелограмм АВСD, в котором <BAC=30 градусов, из В на АD проведем высоту h. SСh=12 х h
h - катет получившегося прямоугольного Δ, который лежит напротив <30 градусов. Свойство прямоугольного Δ - катет, лежащий против <30 градусов равен половине гипотенузы. Гипотенуза у нас вторая сторона основания, которая равна 8. Значит, h=4. Теперь можно узнать площадь основания или SCh=12 х 4=48
Тогда полная поверхность параллелепипеда равна S=2(SАС+SBC+SСh)
=2(8 · 6 + 12 · 6 + 12 · 4)= 2 · 168=336 Если в условии см, 336 см² - площадь поверхности ПРЯМОГО параллелепипеда
S = 4*Pi*R*R (четыре пи эр квадрат)
Нам неизвестно, какой радиус у сферы, но известно, что сфера описана около куба, то есть половина внутренней диагонали куба и будет радиусом нашей сферы.
Чтобы найти внутреннюю диагональ куба, воспользуемся формулами для прямоугольного треугольника. Сначала найдём диагональ грани куба:
d = 2^0.5 * a = 2^0.5 (корень квадратный из 2) метров
Теперь найдём внутреннюю диагональ:
D = (a^2 + b^2)^0.5 = (1 + 2)^0.5 = 3^0.5 (корень квадратный из 3) метров.
Разделив внутреннюю диагональ куба, которая является диаметром сферы, пополам, получим радиус сферы:
R = 3^0.5 / 2 метра
Подставим это значение в первую формулу:
S = 4 * Pi * (3^0.5 / 2)^2 = 4 * Pi * 3 / 4 = 3Pi = 9.42 квадратных метра
ОТВЕТ: Площадь сферы равна 3Pi квадратных метра