Сфера касается сторон треугольника. Найти площадь сферы, если стороны треугольника равны : 12 см 12 см 6 см и плоскость треугольника совпадает с наибольшим сечением сферы..
Равнобедренный треугольник касается своими сторонами сферы. Плоскость на которой лежит треугольник проходит через центр сферы. Найдем радиус сферы - радиус вписанной в треугольник окружности.
Відповідь:
Площадь сферы равна 21,6 × pi ~= 67,86 см^2.
Пояснення:
Равнобедренный треугольник касается своими сторонами сферы. Плоскость на которой лежит треугольник проходит через центр сферы. Найдем радиус сферы - радиус вписанной в треугольник окружности.
r = b/2 × sqrt ( ( 2×a - b ) / ( 2×a + b ) )
Здесь
а - боковая сторона равнобедренного треугольника,
а = 12 см.
в - основание равнобедренного треугольника
в = 6 см.
r = 6/2 × sqrt ( ( 24 - 6 ) / ( 24 + 6 ) ) =
= 3 × sqrt ( 18 / 30 ) = 3 × sqrt ( 3 / 5 )
Площадь сферы
S = 4 × pi × r^2 = 4 × pi × 9 × 3 / 5 =
= 21,6 × pi ~= 67,86 см^2.