Сфера вписана в цилиндр.
D цилиндра = 10 см
S полной поверхности цилиндра - S полной поверхности сферы = ?
D цилиндра = D сферы = 10 см.
=> R цилиндра = R сферы = D/2 = 10/2 = 5 см.
Рассмотрим цилиндр:
S полной поверхности = S боковой поверхности + 2S основания.
S боковой поверхности = 2пRh
S осн = S круга = пR²
h = D
=> S боковой поверхности = п(2 * 5 * 10) = 100п см²
S основания = п * (5)²= 25п см²
=> S полной поверхности = 2 * 25п + 100п = 150п см²
Рассмотрим сферу:
S полной поверхности = 4пR²
S полной поверхности = п(4 * (5)²) = 100п см²
----------------------------------------------------------------------
150п - 100п = 50п см²
Сфера вписана в цилиндр.
D цилиндра = 10 см
Найти:S полной поверхности цилиндра - S полной поверхности сферы = ?
Решение:D цилиндра = D сферы = 10 см.
=> R цилиндра = R сферы = D/2 = 10/2 = 5 см.
Рассмотрим цилиндр:
S полной поверхности = S боковой поверхности + 2S основания.
S боковой поверхности = 2пRh
S осн = S круга = пR²
h = D
=> S боковой поверхности = п(2 * 5 * 10) = 100п см²
S основания = п * (5)²= 25п см²
=> S полной поверхности = 2 * 25п + 100п = 150п см²
Рассмотрим сферу:
S полной поверхности = 4пR²
S полной поверхности = п(4 * (5)²) = 100п см²
----------------------------------------------------------------------
150п - 100п = 50п см²
ответ: 50п см²