В условии ошибка: ВС ║AD, а не АС, так как параллельные прямые не могут проходить через одну точку.
BF = DE по условию,
∠AED = ∠CFB по условию,
∠CBF = ∠ADE как накрест лежащие при пересечении параллельных прямых ВС и AD секущей BD, ⇒
ΔCBF = ΔADE по стороне и двум прилежащим к ней углам.
Значит CF = AE,
BE = BF - EF, DF = DE - EF, а так как BF = DE, то и BE = DF,
∠CFD = ∠AEB как смежные с равными углами (∠AED = ∠CFB по условию),
значит ΔCFD = ΔAEB по двум сторонам и углу между ними.
Тогда ∠АВЕ = ∠CDF, а эти углы - накрест лежащие при пересечении прямых АВ и CD секущей BD, значит АВ║CD.
Даны точки A: [-12;-4] B: [-5;-6] C: [0;3] .
Координаты вектора BC: (0 - (-5); 3 - (-6)) = (5; 9).
Длина вектора AB = √((-5)² + (-12)²) = √(25 + 144)= √169 = 13.
Координаты середины отрезка AC: ((-12+0)/2=-6; (-4+3)/2=-0,5) = (-6; -0,5).
Периметр треугольника ABC.
Расчет длин сторон
АВ (с) = √((Хв-Ха)²+(Ув-Уа)²) = √53 ≈ 7,28011.
BC (а)= √((Хc-Хв)²+(Ус-Ув)²) = √106 ≈ 10,29563.
AC (в) = √((Хc-Хa)²+(Ус-Уa)²) = √193 ≈ 13,89244399.
Периметр равен Р = 31,46818.
Длина медианы BM. Точка М - середина АС:(-6; -0,5).
ВМ = √(-6-(-5))² + (-0,5-(-6))²) = √(1 + 30,25) = √31,25 ≈ 5,59017.
В условии ошибка: ВС ║AD, а не АС, так как параллельные прямые не могут проходить через одну точку.
BF = DE по условию,
∠AED = ∠CFB по условию,
∠CBF = ∠ADE как накрест лежащие при пересечении параллельных прямых ВС и AD секущей BD, ⇒
ΔCBF = ΔADE по стороне и двум прилежащим к ней углам.
Значит CF = AE,
BE = BF - EF, DF = DE - EF, а так как BF = DE, то и BE = DF,
∠CFD = ∠AEB как смежные с равными углами (∠AED = ∠CFB по условию),
значит ΔCFD = ΔAEB по двум сторонам и углу между ними.
Тогда ∠АВЕ = ∠CDF, а эти углы - накрест лежащие при пересечении прямых АВ и CD секущей BD, значит АВ║CD.
Даны точки A: [-12;-4] B: [-5;-6] C: [0;3] .
Координаты вектора BC: (0 - (-5); 3 - (-6)) = (5; 9).
Длина вектора AB = √((-5)² + (-12)²) = √(25 + 144)= √169 = 13.
Координаты середины отрезка AC: ((-12+0)/2=-6; (-4+3)/2=-0,5) = (-6; -0,5).
Периметр треугольника ABC.
Расчет длин сторон
АВ (с) = √((Хв-Ха)²+(Ув-Уа)²) = √53 ≈ 7,28011.
BC (а)= √((Хc-Хв)²+(Ус-Ув)²) = √106 ≈ 10,29563.
AC (в) = √((Хc-Хa)²+(Ус-Уa)²) = √193 ≈ 13,89244399.
Периметр равен Р = 31,46818.
Длина медианы BM. Точка М - середина АС:(-6; -0,5).
ВМ = √(-6-(-5))² + (-0,5-(-6))²) = √(1 + 30,25) = √31,25 ≈ 5,59017.