Доказательство. Построим прямоугольный треугольник АВС с прямым углом АСВ. Проведем в нем медиану CD из прямого угла к стороне АВ. Согласно свойству медианы получим, что отрезок BD равен отрезку AD. Докажем, что медиана CD равна половине гипотенузы АВ. Достроим медиану CD так, что отрезок DM будет равен CD. В результате получим четырехугольник AMBC. Для начала докажем, что полученный четырехугольник АМВС является прямоугольником. Рассмотрим треугольники ADM и CDВ. Они равны, так как отрезки AD и AB равны, а также отрезки MD и CD равны, а углы между этими сторонами равны как вертикальные. Поскольку эти треугольники равны (по двум сторонам и углу между ними), то их стороны АМ и ВС также равны. Если аналогично рассмотреть треугольники ADC и BDM, то они также равны, а соответственно их стороны АС и ВМ равны. Из этого следует, что четырехугольник АМВС является прямоугольником. По свойству диагоналей прямоугольника, их диагонали пересекаются в точке, которой делятся пополам. Поэтому, можно утверждать, что отрезок CD равен половине отрезка АВ. Таким образом, мы доказали, что медиана прямоугольного треугольника, проведенная из прямого угла, равна половине его гипотенузы. Доказательство завершено.
Угол α между вектором a и b (формула):
cosα=(Xa*Xb+Ya*Yb+Za*Zb)/[√(Xa²+Ya²+Xa²)*√(Xb²+Yb²+Zb²)].
Следовательно, надо найти координаты векторов СА и СВ и по приведенной выше формуле вычислить косинус угла между этими векторами.
Координаты вектора равны разности соответствующих координат точек его конца и начала ab{х2-х1;y2-y1;z2-z1}.
Вектор СА{6-1;2-(-5);4-8} ={5;7;-4},
Bектор СВ{-3-1;5-(-5);-7-8} = {-4;10;-15}. Тогда
cos(CA^CB) = (5*(-4)+7*10+(-4)*(-15))/[√(25+49+16)*√(16+100+225)] = 0,6279.
<ACB = arccos(0,6279) ≈ 51,1°. Это ответ.
Или по теореме косинусов:
Найдем длины сторон треугольника АВС (модули векторов) АВ, СA и СB, зная их координаты.
Вектор АВ{-9;3;-11}, вектор СА{5;7;-4}, вектор СВ{-4;10;-15}.
|AB|=√(81+9+121) = √211
|CA|=√(25+49+16) = √90
|CB|=√(16+100+225)=√341.
Тогда по теореме косинусов:
Cos(CA^CB)=(90+341-211)/(2*√90*√341) = 220/350,4 ≈ 0,6279.
ответ тот же, что и в первом случае.
Построим прямоугольный треугольник АВС с прямым углом АСВ.
Проведем в нем медиану CD из прямого угла к стороне АВ. Согласно свойству медианы получим, что отрезок BD равен отрезку AD.
Докажем, что медиана CD равна половине гипотенузы АВ.
Достроим медиану CD так, что отрезок DM будет равен CD. В результате получим четырехугольник AMBC.
Для начала докажем, что полученный четырехугольник АМВС является прямоугольником.
Рассмотрим треугольники ADM и CDВ. Они равны, так как отрезки AD и AB равны, а также отрезки MD и CD равны, а углы между этими сторонами равны как вертикальные. Поскольку эти треугольники равны (по двум сторонам и углу между ними), то их стороны АМ и ВС также равны.
Если аналогично рассмотреть треугольники ADC и BDM, то они также равны, а соответственно их стороны АС и ВМ равны.
Из этого следует, что четырехугольник АМВС является прямоугольником.
По свойству диагоналей прямоугольника, их диагонали пересекаются в точке, которой делятся пополам. Поэтому, можно утверждать, что отрезок CD равен половине отрезка АВ.
Таким образом, мы доказали, что медиана прямоугольного треугольника, проведенная из прямого угла, равна половине его гипотенузы.
Доказательство завершено.