Сформулируйте теоремы,обратные теоремам: а)Если натуральное число делится на 4, то оно делится и на 2
б)Если а>b,то a+c>b+c,для любых действительных чисел a,b,c
в)Если натуральное число заканчивается 0,то оно делится на 5
г)В равностороннем треугольнике все углы конгруэнтны
д)Если сторона [AC] треугольника АВС имеет наибольшую длину,то угол В имеет наибольшую градусную меру
а В математике его называют «куб».
Рассмотрим это геометрическое тело.

Поверхность куба состоит из квадратов.
У квадрата все стороны равны.
Все квадраты, из которых состоит поверхность куба, одинаковы.
Их называют гранями.
Поэтому куб называют многогранником.
У куба 6 граней.

У каждой грани есть стороны.
Стороны называют ребрами.
У куба 12 ребер.
Каждое ребро относится к двум граням куба.
Так как у квадрата все стороны равны, то и все грани куба имеют одинаковую длину.
Концы ребер называются вершинами.
Каждое ребро соединяет две вершины.
Вершин у куба – 8.
Грань, ребро, вершина – это элементы куба.
В одной вершине сходится 3 ребра, каждая грань имеет 4 соседних грани, у каждой грани – 4 ребра.
Возьмем куб, выполненный из бумаги. Попробуем его развернуть. Получится развертка куба.

Развертка – это выкройка куба.
Она состоит из 6 квадратов, расположенных в таком порядке, что из них можно сложить или склеить модель куба.
Перейдем к практической части.
Как изобразить куб на плоскости, например, на листе бумаги?
Куб – объемный предмет. Если обвести основание куба – получится квадрат. Это не является изображением куба.
Для наглядного изображения куба достаточно показать три его грани, например, верхняя, правая и передняя. Также можно сделать чертеж куба.

Для выполнения чертежа построим сначала переднюю грань, сзади выше и правее - заднюю грань, проведем нижние и верхние ребра боковых граней.
Ребра, которые не видны, изображают пунктирной линией, остальные сплошной линией.
Отметим, что на рисунке и чертеже мы не можем передать реальные размеры всех ребер куба.
Итак, в этом уроке Вы познакомились с геометрическим телом «куб», а также научились его изображать на плоскости.
Задачи подобного рода встречаются часто, и решаются, как правило, с т. Пифагора.
Пусть ВО=х, тогда ОС=3-х.
По теореме Пифагора выразим квадрат высоты АО ( т.к. она перпендикулярна плоскости, отсюда перпендикулярна и любой прямой на плоскости. проходящей через О) треугольника ВАС.
АО²=АВ²-ВО²
АО²=АС²-ОС²
Приравняем оба уравнения:
АВ²-ВО²=АС²-ОС²
9-х²=6-9+6х-х²
6х=12
х=2
3-х=3-2=1
ВО=2см, ОС=1см