Как известно, у параллелограмма противоположные стороны равны. Поэтому, мы можем попробовать составить два вектора - AB и CD если они параллельны друг другу, то будет выполняться условие AB=CD*n где n-некое число
AB=(-2-(-5);3-(-6))=(3;9) CD=(7-10;0-9)=(-3;-9)
Как видно, AB=CD*-1, поэтому вектора AB и CD параллельны
Проверим это же условие для сторон AD и BC AD=(7-(-5);0-(-6))=(12;6) BC=(10-(-2);9-3)=(12;6)
Как видно, вектора AD и BC параллельны
Есть еще одно условие: если диагонали четырехугольника пересекаются в одной точке и делятся в ней пополам, то четырехугольник - параллелограмм.
Для этого найдем координаты середин отрезков AC и BD
Как видно, обе диагонали имеют середины в одной и той же точке
Учитывая все доказательства выше, можно говорить, что ABCD - параллелограмм
Длины всех сторон можем найти, посчитав длины векторов выше
Проведём ВМ║АD. Четырехугольник АВМD- параллелограмм ( стороны попарно параллельны)
DM=AB=18 см
В ∆ ВМС ∠ВМС=∠АDМ.
МС=DC-DM=27-18=9
По т.косинусов -cos угла ВМС=[ВС*- (ВМ*+МС*)]/2BM•BC⇒
cos ∠BMC=18/54=1/3
Площадь параллелограмма равна произведению его соседних сторон на синус угла между ними.
S ABMD= AD•DM•sin ADM
sin2 α + cos2 α = 1⇒
sin ∠ADM=√(1-1/9)=√8/3=2√2/3
S ABMD=18•3•2√2•3=36√2 см²
S∆ ABD=SABMD/2=18√2
В трапеции треугольники, образованные при пересечении диагоналей, подобны. k=DC/АВ=27/18=3/2
Тогда DB=DK+KB=5 частей АН- общая высота треугольников АКD и АDВ .
Отношение площадей треугольников с равными высотами равно отношению их оснований.
S ∆ ADK=3/5 S∆ADB=3•18√2/5=54√2/5=10,8√2 см²
------Примечание. Это один из вариантов решения этой задачи. Другой дан мной 6.03 этого года.
если они параллельны друг другу, то будет выполняться условие AB=CD*n
где n-некое число
AB=(-2-(-5);3-(-6))=(3;9)
CD=(7-10;0-9)=(-3;-9)
Как видно, AB=CD*-1, поэтому вектора AB и CD параллельны
Проверим это же условие для сторон AD и BC
AD=(7-(-5);0-(-6))=(12;6)
BC=(10-(-2);9-3)=(12;6)
Как видно, вектора AD и BC параллельны
Есть еще одно условие: если диагонали четырехугольника пересекаются в одной точке и делятся в ней пополам, то четырехугольник - параллелограмм.
Для этого найдем координаты середин отрезков AC и BD
Как видно, обе диагонали имеют середины в одной и той же точке
Учитывая все доказательства выше, можно говорить, что ABCD - параллелограмм
Длины всех сторон можем найти, посчитав длины векторов выше
AB=(3;9)
CD=(-3;-9)
AD=(12;6)
BC=(12;6)